SE (Prod. /Industrial Engineering) (2008 Course) Structure

Semester- I

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Teaching Scheme (Hrs)</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lecture</td>
<td>Pr./Dw</td>
</tr>
<tr>
<td>207002</td>
<td>Engineering Mathematics III</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>202085</td>
<td>Heat and Fluid Engineering</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>211081</td>
<td>Strength Analysis of Machine Elements</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>211082</td>
<td>Machine Tool Operations</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>211083</td>
<td>Material Science</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>211084</td>
<td>M/C Drawing & Computer Graphics</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>22</td>
<td>8</td>
</tr>
</tbody>
</table>

Semester II

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject</th>
<th>Teaching Scheme (Hrs)</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lecture</td>
<td>Pr./Dw</td>
</tr>
<tr>
<td>203050</td>
<td>Electrical Technology</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>211086</td>
<td>Theory of Machines</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>211087</td>
<td>Welding and Foundry</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>211088</td>
<td>Design of Machine Elements</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>211089</td>
<td>Industrial Organization and Management</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>211090</td>
<td>Workshop Practice</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Pr- Practical Dwg- Drawing Tw- Term Work
Note: Practical/Oral Based On Term Work
Section I

Unit I: Linear Differential Equations (LDE) of second and higher order (09 Hours)
LDE with constant coefficients, Homogeneous Equations, Cauchy’s and Legendre’s DE. Simultaneous & Symmetric Simultaneous DE, Mass spring mechanical systems, Damped and Undamped systems.

Unit II: Transforms (09 Hours)
a) Laplace Transform (LT): LT of standard functions, properties and theorems, Inverse LT, Application of LT to solve LDE.

Unit III: Partial Differential Equations (PDE) (09 Hours)
Basic concepts, modeling: Vibrating String, Wave equation. Method of separation of variables, Use of Fourier series, Heat equation: one and two dimensional heat equations, Solution by Fourier Transforms, modeling Membrane two dimensional wave equation.

Section II

Unit IV: Statistics and Probability (09 Hours)
Measure of central tendency, dispersion, Correlation and Regression, Probability, Probability distributions, Binomial, Poisson and Normal distributions, Population and Sample, Sampling Distributions, t-distribution Chi Square distribution.

Unit V: Vector Differential Calculus (09 Hours)

Unit VI: Vector Integral Calculus (09 Hours)
Line, Surface and Volume integrals, Work-done, Green’s Lemma, Gauss’s Divergence Theorem, Stoke’s Theorem.

Text Books:

Reference Books:
202085 Heat and Fluid Engineering

<table>
<thead>
<tr>
<th>Teaching scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: 4 hrs/week</td>
<td>Theory: 100 marks</td>
</tr>
<tr>
<td>Practical: 2 hrs/week</td>
<td>Term Work: 50 Marks</td>
</tr>
</tbody>
</table>

Unit I
Introduction & Fluid properties

Static’s of Fluid
Pascal’s law, Pressure on plane/curved surface, pressure measurements, Manometers, center of pressure, metacentric height.

Unit II
Fluid Flow
Types of flow, examples, forces acting on fluid flow, Stream lines, Path lines, Streak lines. Velocity potential, flownets, Euler’s equation of motion along a stream line, Bernoulli’s equation, applications of Bernoulli’s equation, orifice meter, venturimeter, notches (rectangular & triangular), Pitot tube.

Unit III
Flow through pipes
Laminar and turbulent flow through circular pipes, major loss-Darcy-weisbach equation, minor losses, pipes in series and parallel, water hammer, flow around a cylinder in immersed conditions, Buckingham’s pie theorem, dimensionless numbers.
Fluid Machinery
Construction, working and applications of hydraulic turbines, centrifugal pumps and reciprocating pumps.

Unit IV
Fuels and lubricants
Mass function, combustion equation, proximate and ultimate analysis of fuel, stoichiometric analysis of combustion products, volumetric and gravimetric analysis, types & properties of lubricants, flash point, fire point, viscosity, Vapor pressure, cloud point, pour point etc.
Steam generators
Steam generation, steam properties, Babcock and Wilcox boiler, Cochran boilers(construction and working),boiler accessories, boiler performance, boiler efficiency, equivalent of evaporation and energy balance.

Unit V
Refrigeration
Air refrigeration, vapour compression refrigeration system, p-h and T-s diagram (with numerical), sub cooling, superheating, various refrigerants used in refrigeration systems, their effect on environment.
Air conditioning
Psychrometry, properties of air, types of air conditioning, central, unit and industrial air conditioning, introduction to HVSC.
Heat transfer- Applications of conduction, convection and radiation in manufacturing.
Unit VI
(8)
Reciprocating compressor
FAD, work done, efficiency-volumetric (with clearance volume), isothermal, multistage compression

IC engines
Cycle diagram, diesel and otto cycle (no numericals) IC engine systems --starting, ignition, cooling and lubrication systems, testing and performance of IC engine.

Practical and Term Work

Any eight, (Any one trail should be computer interfaced)

1. Verification of Bernoulli’s equation
2. Determination of friction factor for laminar and turbulent flow through pipes
3. Determination of losses in various pipe fitting
4. Calibration of venture meter/orifice meter
5. Trial on boiler
6. Trial on vapour compression refrigeration system
7. Trial on petrol engine
8. Trial on diesel engine
9. Trial on air compressor.
10. Trial on Air conditioning system

Text Books

Reference Books

Unit I
Simple stresses and strains: Basic Concept
Concept of stress and strain (linear, lateral, shear and volumetric), Hooke's law, Poisson's ratio, modulus of elasticity, modulus of rigidity, stress strain diagrams for ductile and brittle materials, factor; of safety, working stress, generalized Hooke's law, concept of 3-D stress state, bulk modulus, interrelation between elastic constants.

Unit II
Axially Loaded Components
Axial force diagram, stresses, strains, strains & deformations in determinate and indeterminate, homogenous and composite bars under concentrated loads, self weight and temperature changes.
Transversely Loaded Components
Shear Force and Bending Moment in Determinate Beams due to Concentrated Loads, Uniformly Distributed Loads. Relation between SF and BM Diagrams for Cantilevers, Simple and Compound Beams, Bends Defining Critical and Maximum Values and Positions of Points of Contra Flexure- Construction of Loading Diagram and BMD from SFD and Construction of Loading Diagram and SFD from BMD.

Unit III
Bending stresses
Theory of simple bending, assumptions, derivation of flexure formula, second moment of area of common cross sections with respect to centroidal and parallel axes. bending stress.
Shear stresses:
Concept, derivation of shear stress distribution formula, shear stress distribution diagram for common symmetrical sections, maximum and average shear stress, shear connection between flange and web.

Unit IV
Transformation of Stresses and Strains
Normal and shear stresses on any oblique plane. Concept of principal planes. Derivation of expressions for principal stresses and maximum shear stress, position of principal planes and planes of maximum shear, graphical solution using Mohr’s circle of stresses.
Strain energy and impact
Concept of strain energy, derivation and use of expressions for deformations of axially loaded members under gradual impact loads. Strain energy due to self-weight.

Unit V
Torsion of circular shafts:
Stresses, strains and deformations in determinate and indeterminate shafts of solid and hollow homogeneous and composite circular cross section subjected to twisting moment. Derivation of torsion equation. Stresses due to combined torsion, bending and axial force on shafts.
Unit VI

Slope and deflection of Beams:
Relation between BM and slope, slope and deflection of determinate beams, Double Integration Method (Macaulay’s Method). Derivation of Formulae for Slope and Deflection for Standard Cases.

Buckling
Concept of buckling of columns. Derivation of Euler's formula for buckling load for column with hinged ends. Concept of equivalent length for various end conditions. Limitations of Euler's formula. Rankin’s formula. Johnson’s formula, safe load on columns.

Text Books

Reference Books
Unit I
Lathes
Classification, Specification, lathe parts, bed, headstock, tailstock, lathe accessories and attachments, lathe operations, taper turning methods, thread mechanism, back geared, tumbler geared, all geared headstock, Capstan & turret lathe, comparison, Machining time calculations, Introduction to CNC lathe.

Unit II
Drilling, Boring and Reaming
Classification, specification, sensitive, radial, gang, multi-spindle, spindle and drill head assembly, types of drills, twist drill nomenclature, reamer, types of reamer, taps, cutting parameters, tool holding devices. Classification of boring machines, specifications, types boring tools, various operations performed, Machining time calculations, Introduction to jig boring.

Unit III
Milling Machines
Classification, specification, Column and knee type milling machine, milling operations, standard milling cutters, geometry of milling cutter, attachments, universal dividing head, methods of indexing, gear train calculations, machining time calculations, Introduction to CNC milling.

Unit IV
Shaper, Planer, Slotter and Broaching Machines
Standard parts of shaper, planner, slotter and broaching machine, specification, Crank and slotted link mechanism, hydraulic shaper mechanisms, auto feed mechanism, open and cross belt drive mechanism for planner, operations, Types of broaching machine, specification, broach geometry, machining time calculations.

Unit V
Grinding Machine
Classification, Abrasives, bonds, grit, grade, structure of grinding wheels, wheel shape and sizes, standard marking system, dressing & truing, glazing, loading, mounting and balancing of grinding wheels, Selection of grinding wheels. Grinding operations, machining time calculations.

Unit VI
Surface finishing processes and coating
Super finishing processes, honing, lapping, buffing, polishing, tumbling, electroplating, galvanizing, metal spraying, and burnishing. Hot dipping, Study of process parameters of above processes.
Term-Work:
Term work should contain at least six assignments on following topics:
1. Lathe: - Back gear, All Gear, Apron, Thread cutting Mechanisms.
3. Drilling: -Types of drill machines, Tool Holder, Floating holders.
4. Study of Shaper, Planer, Slotting: -Quick Return mechanisms, Crank and slotted link mechanism, Open and cross belt mechanism.
5. Study of Grinding machines: - Types, Selection of grinding wheels.
7. Industrial visits & report based on it.
8. Demonstration & video display of various operations carried out of advanced machine tools & report based on it.
Oral shall be based on the above term-work.

Text Books

Reference Books

211083 Material Science

Teaching Scheme
Lectures: 4 Hrs/Week
Practical: 2 Hrs/Week

Examination Scheme
Theory: 100 Marks
Term Work: 50 Marks

Unit I

Introduction

Unit II

Material Testing:
(a) Destructive Testing
(b) Non-destructive tests

Unit III

Equilibrium diagrams

Unit IV

Strengthening Mechanisms
Refinement of grain size, Solid solution hardening, Dispersion hardening, Age hardening, Martensitic transformation, Composite materials etc.

Pyrometry
Principle, Operation and uses of various pyrometers like thermocouples Resistance pyrometer, Disappearing filament pyrometer, Total radiation pyrometer.

Unit V

Methods of Surface Improvements and Corrosion Prevention
Corrosion Prevention Methods: Design and material selection, atmosphere control, electroplating, Inhibitors, Cathodic and anodic protection, Coatings etc. Introduction to surface modification techniques such as Electro deposition, Diffusion coatings, Vapor deposition Thermal Spray Coatings, Ion implantation etc.
Unit VI

Powder Metallurgy

Process in brief, powder characteristics, powder manufacturing, Production of sintered structural components such as self lubricated bearing, cemented carbide tools, cermets, refractory metals, electrical contact materials, friction materials, Diamond impregnated tools etc

Term Work: Term work shall consist of following experiments.

List of Experiments:
1) Tensile test on mild steel and aluminum test pieces.
2) Compression test on cast iron and brass test pieces.
3) Brinell hardness test on different materials.
4) Poldi hardness test on different materials.
5) Vickers hardness test on different materials
6) Rockwell and Rockwell superficial test on different materials with different Scales.
7) Izod and Charpy impact tests.
8) Erichsen cupping test on minimum three different sheet metal samples.
9) Non- destructive testing - Magnaflux testing, Dye penetrant test, ultrasonic testing, eddy current testing

Text Books

Reference Books
8. Catalogue of reputed manufacturers

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 2 Hrs/Week</td>
<td>Term Work: 50 Marks</td>
</tr>
<tr>
<td>Practical: 2 Hrs/Week</td>
<td>Oral: 50 Marks</td>
</tr>
</tbody>
</table>

Unit-I

Conventions in Machine Drawing
Introduction to machine drawing, Dimensioning technique for machine components, Conventional representation of machine components as per IS code: SP-46 such as screw threads, springs, gears, bearing, tapped holes, knurling, splined shafts, tapers, chamfers, countersunk and counter bores, keys, & welded joints.

Surface Roughness
Introduction, terminology, machining symbol with all parameters, roughness values (Ra) and roughness grade numbers, indicating surface roughness on drawing.

Unit-II

Tolerances & Fits
Definitions applied to tolerances, types of tolerance, types of fits, fit system.
Geometrical tolerances – Nomenclature, tolerance frame, types of geometrical tolerances & their symbols, indicating geometric tolerances on drawing.

Standard Fasteners & Rivets.
Thread terminology, thread forms, thread designations, single and multi-start threads, right and left hand threads, types of screws, bolts and nuts, nut locking arrangements using pins, washers & screws.

Rivets: forms & proportions of rivet heads, types of riveted joints.

Unit-III

Assembly & Details of Machine Parts
Introduction to assembly & part drawing, examples-Revolveing Centers, Machine Vice, Tool post, Screw Jack, jigs & fixtures, tailstock, Cotter Joint, Knuckle Joint, Flange Joint, Rigid and Flexible Coupling, Drawing reading – Title block, part list / bill of material, revision block etc.

Unit IV

Basics of computer graphics
Software configurations, functions of graphics package, constructing the geometry, mathematical representation of various graphics elements such as line, circle, rectangle, ellipse, arc, spline etc.

2-D transformations
Geometric transformations, translations, rotation, mirror, concatenations.

Unit V

Fundaments of solid modeling
Geometry and topology use of primitives in solid modeling, Basics of Boolean operations, and representations schemes of solids, B-rep and CSG, Development of simple solids.

Unit VI

Autolisp programming:
Introduction to Autolisp, data types in Autolisp-integers, Real numbers, strings, Data type conversion, Math functions, logical functions, working with list and entities, filtering from lists,
entity handling, list operators, string functions, branching and looping, introduction to visual lisp. Parametric programming.

Term Work:
The term work shall consist of sketches following drawn in the sketchbook.
Sketches of conventional representation of machine components as per IS code: SP 46 such as screw threads, tapped holes, holes on circular pitch, bearing, knurling, splined shafts, springs, gears, tapers, chamfers, countersunk and counter bores, keys, welded joints, structural sections in the sketch book.
Also the term work shall consist of a computer printouts of following exercises:
1. Printout on Half imperial drawing sheet - Conventional Representation of Machine Components as per IS Code: SP 46 such as Screw Threads, Tapped Holes, Holes on Circular Pitch, Bearing, Knurling, Splined Shafts, Springs, Gears, Tapers, Chamfers, Countersunk And Counter Bores.
5. 2D transformation of a simple two dimensional component.

Text Books

Reference Books
3. Auto LISP Reference Manual”.
203050 Electrical Technology

Teaching Scheme: Examination Scheme:
Lectures: 4 Hrs/week Theory: 100 Marks
Practical: 2 Hrs/week Term work: 25 Marks

Unit I (8)
a) **Electrical Power Measurement**: Measurement of active power in three phase balanced loads by using one wattmeter & two wattmeter, Concept of reactive power using two wattmeter, effect of power factor on wattmeter readings.
b) **Electrical Energy Measurement**: Single Phase and three phase energy meter, construction and Working. Use of CT & PT for measurement of Power / Energy in single phase and three phase system (Theoretical Treatment only). Standard specifications of single and three phase energy meter, CT & PT for LT & HT measurements.
c) **Tariff**: Introduction, objectives & Details of H.T. and L.T tariff, TOD tariff, advantages and improvement of power factor (Theoretical Treatment only)
d) **Illumination**: Various terms related to illumination, types and requirement good lighting scheme, special purpose lighting.

Unit II (8)
a) **Single phase transformer**: Types, KVA rating, approximate equivalent circuit, voltage regulation and efficiency of transformer, condition for maximum efficiency.
b) **Three phase transformers**: Types of transformer connection (star/star, star/delta, delta/star, and delta/delta) and applications based on connections. (Theoretical Treatment only) Introduction of power transformer, distribution transformer, study of typical distribution transformer substation, specifications of transformer (KVA rating, voltage ratio, current rating)
c) **Three phase Induction Motor**: Constructional feature, working principle of three phase induction motors, types; torque equation, torque slip characteristics; power stages; efficiency; types of starters; methods of speed control, Industrial applications.

Unit III (6)
a) **Single phase induction motors**: Types, construction, working principle of split phase and shaded pole type induction motors, applications. Specifications of induction motors (KW rating, rated voltage, current rating, frequency, speed, class of insulation)
b) **Synchronous Generator**: Constructional features, (Salient and non- salient),working principle, e m f equation, synchronous speed of an alternator, concept of synchronous reactance and impedance, phasor diagram of loaded alternator, voltage regulation of alternator by direct loading method and synchronous impedance method. Specifications of synchronous generator

Unit IV (6)
D.C. Machines
Construction, working principle of D.C. generator, emf equation of D C generator. (Theoretical concept only).
Special purpose motors: Construction, working principle, characteristic and applications of stepper motors, A.C. and D.C servomotors, universal motors.

Unit V
Semiconductor power devices:
SCR: Construction detail, V-I Characteristics, Methods to turn ON, switching action during ON & OFF, specification, Concept of commutation of SCR. applications
DIAC: Construction, V-I Characteristics
TRIAC: Construction, V-I Characteristics, turning ON process.
MOSFET: Construction, transfer Characteristics, output characteristics, Methods to turn ON & OFF, applications
IGBT: Construction detail, transfer Characteristics, output characteristics, Methods to turn ON & OFF, applications.
GTO: Construction, working, advantages and disadvantages

Unit VI
Drives: Advantages of Electrical Drives, Individual & Group drives, selection of drives depending on load characteristics.

Term Work:
A term work shall consist of a record of eight practical of the following:
(Experiment no. 9 & 10 are compulsory, 6 experiments out of expt. No 1 to 8).
1. Speed control of a D. C. shunt motor by armature voltage and flux control methods.
2. Load test on a D. C. shunt motor.
3. Load test on a D. C. series motor.
5. Regulation of an alternator by synchronous impedance method.
6. Regulation of an alternator by direct loading method.
7. Load test on a three phase induction motor.
8. Study of a) D.C. motor starters, b) three phase induction motor starter.
9. Study of V-I characteristics of SCR & TRAIC
10. Study of a distribution transformer substation and HT/LT energy bill.

Text Books
Reference Books

211086 Theory of Machines

<table>
<thead>
<tr>
<th>Teaching scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: 4 hrs/week</td>
<td>Theory: 100 marks</td>
</tr>
<tr>
<td>Practical: 2 hrs/week</td>
<td>Oral: 50 Marks</td>
</tr>
</tbody>
</table>

Unit I

(8)
Basics: Kinematic Link, Types of links, Difference between machines, mechanism and structure, Kinematics pair, Types of constrained motion, Classification of Kinematics pairs, Kinematics chain, Degrees of freedom of mechanisms, Kutzbach and Grubler criterion, Equivalent linkage concept, Inversion of mechanism

Mechanisms: Straight line mechanisms- Exact straight line and approximate straight line type, Steering gear mechanisms - Davis and Ackerman type.

Unit II

(10)
Kinematic Analysis of Mechanisms: (Velocity Analysis)
Concept of position, displacement and velocity of a point and link of a given mechanism, Kinematic analysis of mechanisms by -- Relative velocity method, graphical method, analytical method, Instantaneous Center method, (Numerical treatment expected)

Kinematic Analysis of Mechanisms: (Acceleration Analysis)
Concept of acceleration of a point and link of a given mechanism, Kinematic analysis of mechanisms by -- Relative velocity method, graphical method, analytical method, Coriolis Component of Acceleration, Klein’s construction (Numerical treatment expected)

Unit III

(8)
Friction and Wear: Laws of friction, Types of friction, mechanism of friction, friction analysis, types of wear, mechanism of wear, wear equation, factors responsible wear and friction, methods of reducing wear, lubrication and its mode, lubrication technique, tribology in metal cutting and working.

Unit IV

(8)
Belt Drives: Types of belt drives, Types, Materials used for Belt. Velocity Ratio, Slip, Creep of belt. Length of an open and cross belt drive, Maximum power transmitted, Tension ratio, maximum tension in a belt, Advantage and disadvantages of a V-Belt Drive, Ratio of Driving Tension for V-Belt.

Unit V

(8)
Brakes: - Types of brakes, Force analysis of brakes, external and internal expanding shoe brakes, block brakes, band brakes, block and band brakes, Breaking torque. (Numerical treatment expected)
Dynamometer: - Different types of Absorption and transmission dynamometers.

Unit VI

(6)
Static force analysis of slider-crank mechanism, Theory of compound pendulum, Bifilar and Trifilar suspension methods, dynamically equivalent two mass systems, correction couple, Dynamic force analysis of slider crank mechanism (Analytical and Graphical method)
Term Work
1) Study of Straight line mechanisms
2) Velocity analysis of mechanism by Relative velocity, Klein’s construction and ICR method.
3) Acceleration analysis of mechanism by Relative velocity and acceleration (coriolis component), Klein’s construction method
4) Study of friction and wear of materials
5) Study of belt drives.
6) Study of different types of brakes and dynamometer
7) Determine mass MI of rigid body using bifilar and trifler suspension method.
8) Determine radius of gyration & mass MI of rigid body using compound pendulum method

Text Books

Reference Books
Unit I (8)
Arc welding processes- carbon arc, submerged arc, Tungsten inert gas (TIG), Metal Inert gas (MIG), Plasma arc, stud welding- Theory, comparison on merits, limitations and applications. Fluxes used in arc welding.

Unit II (8)
GAS welding: - processes and equipment used, type of flames, adjustment of flames, oxyacetylene welding, gas cutting –merits, limitations and applications.
Electric resistance welding- processes and equipment used, spot, seam, projection, butt, percussion welding, resistance tube welding, - merits, limitations and applications.

Unit III (8)
Pressure welding, diffusion welding, ultrasonic, friction, explosive, forge, thermit welding, laser, electron beam welding- equipment used- merits, limitations and applications of above processes. Brazing, braze welding and soldering processes.
Inspection and testing of welding:- visual inspection, destructive & non-destructive testing. Estimation of welding cost. Protection and safety in welding.

Unit IV (8)
Sand casting processes
Mould strength, Ingredients of molding materials and their effect on mould strength- testing of mould strength, testing of molding sand.
Melting and pouring of metals:- melting furnace- types, Cupola, electric arc furnace, Induction furnace- Construction, operations and zones, cleaning, finishing of casting.

Unit V (8)
Special casting processes
Pressure and gravity die casting (hot and cold chamber), shell molding, centrifugal casting, continuous casting, investment casting, - their typical applications, merits and limitations.
Casting defects- defects, Inspection- analysis of casting defects- Quality control.
Foundry mechanization and automation.

Unit VI (8)
Casting Design
Metal pouring, Gating system- design of gating system, solidification time, riser design, Principles of gating, riser design and their design methods. Progressive and directional
solidification, casting design consideration, Chvornov’s rule, numericals on casting, defects in casting.
Fluidity- method of measuring fluidity of metal by spiral technique.
Computer applications in casting design and software.

Term work should contain at least eight assignments/practical out of followings.

1. To find out grain fineness number by using sand sieve shaker test.
2. Permeability testing of green sand.
4. Fluidity testing of any metal using fluidity spiral.
5. Study of TIG/MIG welding process parameters for ferrous and nonferrous metals.
6. Tensile test on a welded specimen.
7. Impact test on a welded specimen.
10. An Industrial visit to any foundry.

Oral will be based on above assignment/practical.

Text Books

Reference Books

Unit I

Simple stresses: Tension, compression, bending and torsion, combined effect of different stresses.

Theories of Failures: Maximum principal Stress Theory, Maximum shear stress theory, Maximum principal strain Theory, Maximum strain energy Theory, Maximum Distortion energy Theory

Design of Simple Machine Parts: Factor of safety, Service factor, Design of simple machine parts-Cotter joint, Knuckle joint, lever and Stresses in curved beams (for circular cross-section only).

Unit II
Shafts: Design considerations in Transmission shafts with spur gear and pulley, splined shafts, Shaft design on strength basis, Shaft design on torsional rigidity basis, A.S.M.E. code for shaft design,

Keys: Classification of keys, Design considerations in parallel and tapered sunk keys, Design of square, flat and Kennedy keys, Splines.

Couplings: Design considerations, Classification, Design of Rigid, Muff coupling, Flange coupling and Flexible bushed pin coupling.

Unit III
Threaded Joints: Bolts under tension, Design of bolts and turn buckle. Eccentrically loaded bolted joint in shear, Eccentric load perpendicular to axis of bolt, Eccentric load on circular base, Torque requirement for bolt tightening,

Welded Joints: Stresses in butt and fillet welds, Strength of butt welds, parallel and transverse fillet welds, Axially loaded unsymmetrical welded joint, Eccentric load in plane of welds, Welded joint subjected to bending and torsional moments

Unit IV
Power Screws: Types of screw threads, multiple threaded screws, Torque analysis with square and trapezoidal threads, Self-locking screw, Collar friction torque, Stresses in power screws, design of screw and nut, design of Screw jack.

Unit V
Mechanical Springs: Types, Applications and materials of springs, Stress and deflection equations for helical springs, Types of ends, Design of helical compression and tension springs, Springs in series and parallel, Concentric helical springs, Helical torsion spring, surge in spring, Multi-leaf spring.
Unit VI

Aesthetic and ergonomic considerations in design of products:-
Basic types of product forms, Designing for appearance – Shape, features, materials and finishes, proportions symmetry, contrast etc. Morgan’s colour code. Ergonomic considerations - Relation between Man, machine and environmental factors. Design of displays and controls. Practical examples of products or equipments using ergonomic and aesthetic design principles.

Design for manufacture:-
General principles of design for manufacture and assembly (DFM & DMFA). Principles of design of castings and forgings, Design for machining, Design for powder metallurgy, Design for welding, cost estimation.

Term Work:
1) Term work shall consist of ONE design projects. Design project shall consist of two imperial size sheets – one involving assembly drawing with a part list and overall dimensions and other sheet involving drawings of individual components. Manufacturing tolerances, surface finish symbols and geometric tolerances should be specified so as to make it working drawing. A design report giving all necessary calculations of the design of components and assembly should be submitted in a separate file. Design projects should be in the form of ‘Design of Mechanical System’ comprising of machine elements studied and topics covered in the syllabus. Design data book shall be used wherever necessary to achieve selection of standardized components.
2) Problem based assignment on each unit

Text Books

Reference Books

211089 Industrial Organization & Management

Teaching scheme
Theory: 4 hrs/week

Examination Scheme
Theory: 100 marks

<table>
<thead>
<tr>
<th>Unit I</th>
<th>Evolution of Management Practices</th>
<th>(8)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit II</th>
<th>Motivation</th>
<th>(8)</th>
</tr>
</thead>
</table>

| Group dynamics: Types, characteristics, objectives of Group Dynamics |

| Leadership: Definition, styles & functions of leadership, qualities for good leadership, role of the leader, Theories of leadership, Managerial grid. |

<table>
<thead>
<tr>
<th>Unit III</th>
<th>Entrepreneurship development</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrepreneurship development: Characteristics of successful entrepreneurs, communications skill, problem solving skill and process, Basic element of Business plans, Sources of finance, Selection of Business location, Record keeping system, Analysis financial performance, Break even analysis, Technology and Business, Strategies for Business Growth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit IV</th>
<th>Marketing Management</th>
<th>(8)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unit V</th>
<th>Human Resource Management</th>
<th>(8)</th>
</tr>
</thead>
</table>

Unit VI

Industrial relations:

Wages and Incentives: Concept of wages, factors affecting wages, Types of wage plans. Job Analysis, Job Evaluation and Merit Rating, Trade unionism in India.

Industrial safety: Provisions under the Factories Act 1948, Problems of industrial accidents and the causes of accidents, cost of safety, safety programs and personal protective devices.

Text Books

Reference Books

211090: Workshop Practice

<table>
<thead>
<tr>
<th>Teaching scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical: 2 hrs/week</td>
<td>Term Work: 50 Marks</td>
</tr>
</tbody>
</table>

Each candidate shall be required to complete and submit the following Term Work Jobs:

1. Plain & taper turning (one job) and Gear Cutting (one job)
2. Forging and grinding of lathe tool with one knife and other Vee end (one job).
3. Making simple solid pattern involving wood turning (one job)
4. Gas welding / Arc welding (one job)