SE (Production- Sandwich) 2008 Course structure

Semester- I

<table>
<thead>
<tr>
<th>Subject Code No.</th>
<th>Subject</th>
<th>Teaching Scheme (Hrs)</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lecture</td>
<td>Pr./Dwg</td>
</tr>
<tr>
<td>207002*</td>
<td>Engineering Mathematics III</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>202085*</td>
<td>Heat & Fluid Engineering</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>211081*</td>
<td>Strength Analysis of Machine Elements</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>211121</td>
<td>Manufacturing Processes</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>211083*</td>
<td>Material Science</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>211084*</td>
<td>M/c Drawing & Computer Graphics</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Total: 22 Lecture, 8 Pr./Dwg, 500 Theory, 200 TW, 50 Oral, 750 Total

Total of Part I = 750 Marks

Semester II

<table>
<thead>
<tr>
<th>Subject Code No.</th>
<th>Subject</th>
<th>Teaching Scheme (Hrs)</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lecture</td>
<td>Pr./Dwg</td>
</tr>
<tr>
<td>203050*</td>
<td>Electrical Technology</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>211086*</td>
<td>Theory of Machines</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>211122</td>
<td>Manufacturing Engineering & Metrology Practices</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>211088*</td>
<td>Design of Machine Element</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>211123</td>
<td>Production & Industrial Management-I</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>211124</td>
<td>Computer Graphics Lab</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Total: 20 Lecture, 10 Pr./Dwg, 500 Theory, 150 TW, 100 Oral, 750 Total

Total of Part II = 750 Marks

Total of Part I & Part II = 1500 Marks

Pr- Practical Dwg- Drawing TW- Term Work

Note: Practical/Oral Based On Term Work

- Common to SE (Production/Industrial)
Section I

Unit I: Linear Differential Equations (LDE) of second and higher order (09 Hours)
LDE with constant coefficients, Homogeneous Equations, Cauchy’s and Legendre’s DE.
Simultaneous & Symmetric Simultaneous DE, Mass spring mechanical systems, Damped and
Undamped systems.

Unit II: Transforms (09 Hours)
a) Laplace Transform (LT): LT of standard functions, properties and theorems, Inverse LT,
Application of LT to solve LDE.
b) Fourier Transform (FT): Fourier Integral theorem, Fourier transform Fourier Sine & Cosine
transform, Inverse Fourier Transform.

Unit III: Partial Differential Equations (PDE) (09 Hours)
Basic concepts, modeling: Vibrating String, Wave equation. Method of separation of
variables, Use of Fourier series, Heat equation: one and two dimensional heat flow equations,
Solution by Fourier Transforms, modeling Membrane two dimensional wave equation.

Section II

Unit IV: Statistics and Probability (09 Hours)
Measure of central tendency, dispersion, Correlation and Regression, Probability, Probability
distributions, Binomial, Poisson and Normal distributions, Population and Sample, Sampling
Distributions, t-distribution Chi Square distribution.

Unit V: Vector Differential Calculus (09 Hours)
Physical Interpretation of Vector Differentiation, Vector Differential Operator, Gradient,
Divergence and Curl, Directional Derivative, Solenoidal, Irrotational and Conservative Fields,
Scalar Potential, Vector Identities.

Unit VI: Vector Integral Calculus (09 Hours)
Line, Surface and Volume integrals, Work-done, Green’s Lemma, Gauss’s Divergence Theorem,
Stoke’s Theorem.

Text Books:

Reference Books:
5. Applied Mathematics (Volumes I and II) by P. N. Wartikar & J. N. Wartikar
(Pune Vidyarthi Griha Prakashan, Pune).
and Norman Richert (Brooks/Cole, Thomson Learning).
202085 Heat and Fluid Engineering

Teaching scheme
Theory: 4 hrs/week
Practical: 2 hrs/week

Examination Scheme
Theory: 100 marks
Term Work: 50 Marks

Unit I
Introduction & Fluid properties

Static’s of Fluid
Pascal’s law, Pressure on plane/curved surface, pressure measurements, Manometers, center of pressure, metacentric height.

Unit II
Fluid Flow
Types of flow, examples, forces acting on fluid flow, Stream lines, Path lines, Streak lines. Velocity potential, flownets, Euler’s equation of motion along a stream line, Bernoulli’s equation, applications of Bernoulli’s equation, orifice meter, venturimeter, notches (rectangular & triangular), Pitot tube.

Unit III
Flow through pipes
Laminar and turbulent flow through circular pipes, major loss-Darcy-weisbach equation, minor losses, pipes in series and parallel, water hammer, flow around a cylinder in immersed conditions, Buckingham’s pie theorem, dimensionless numbers

Fluid Machinery
Construction, working and applications of hydraulic turbines, centrifugal pumps and reciprocating pumps.

Unit IV
Fuels and lubricants
Mass function, combustion equation, proximate and ultimate analysis of fuel, stiochiometric analysis of combustion products, volumetric and gravimetric analysis, types & properties of lubricants, flash point, fire point, viscosity, Vapor pressure, cloud point, pour point etc.

Steam generators
Steam generation, steam properties, Babcock and Wilcox boiler, Cochran boilers(construction and working),boiler accessories, boiler performance, boiler efficiency, equivalent of evaporation and energy balance.

Unit V
Refrigeration
Air refrigeration, vapour compression refrigeration system, p-h and T-s diagram (with numerical), sub cooling, superheating, various refrigerants used in refrigeration systems, their effect on environment

Air conditioning
Psychrometry, properties of air, types of air conditioning, central, unit and industrial air conditioning, introduction to HVSC.

Heat transfer- Applications of conduction, convection and radiation in manufacturing.
Unit VI

Reciprocating compressor

FAD, work done, efficiency-volumetric (with clearance volume), isothermal, multistage compression

IC engines

Cycle diagram, diesel and otto cycle (no numericals) IC engine systems --starting, ignition, cooling and lubrication systems, testing and performance of IC engine.

Practical and Term Work

Any eight, (Any one trail should be computer interfaced)

1. Verification of Bernoulli’s equation
2. Determination of friction factor for laminar and turbulent flow through pipes
3. Determination of losses in various pipe fitting
4. Calibration of venture meter/orifice meter
5. Trial on boiler
6. Trial on vapour compression refrigeration system
7. Trial on petrol engine
8. Trial on diesel engine
9. Trial on air compressor.
10. Trail on Air conditioning system

Text Books

Reference Books

211081 Strength Analysis of Machine Elements

<table>
<thead>
<tr>
<th>Teaching scheme</th>
<th>Examination scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 4 hours/week</td>
<td>Theory: 100 marks</td>
</tr>
</tbody>
</table>

Unit I
Simple stresses and strains: Basic Concept
Concept of stress and strain (linear, lateral, shear and volumetric), Hooke's law, Poisson's ratio, modulus of elasticity, modulus of rigidity, stress strain diagrams for ductile and brittle materials, factor of safety, working stress, generalized Hooke's law, concept of 3-D stress state, bulk modulus, interrelation between elastic constants.

Unit II
Axially Loaded Components
Axial force diagram, stresses, strains, strains & deformations in determinate and indeterminate, homogenous and composite bars under concentrated loads, self weight and temperature changes.
Transversely Loaded Components
Shear Force and Bending Moment in Determinate Beams due to Concentrated Loads, Uniformly Distributed Loads. Relation between SF and BM Diagrams for Cantilevers, Simple and Compound Beams, Bends Defining Critical and Maximum Values and Positions of Points of Contra Flexure- Construction of Loading Diagram and BMD from SFD and Construction of Loading Diagram and SFD from BMD.

Unit III
Bending stresses
Theory of simple bending, assumptions, derivation of flexure formula, second moment of area of common cross sections with respect to centroidal and parallel axes. bending stress.
Shear stresses:
Concept, derivation of shear stress distribution formula, shear stress distribution diagram for common symmetrical sections, maximum and average shear stress, shear connection between flange and web.

Unit IV
Transformation of Stresses and Strains
Normal and shear stresses on any oblique plane. Concept of principal planes. Derivation of expressions for principal stresses and maximum shear stress, position of principal planes and planes of maximum shear, graphical solution using Mohr’s circle of stresses.
Strain energy and impact
Concept of strain energy, derivation and use of expressions for deformations of axially loaded members under gradual impact loads. Strain energy due to self-weight.

Unit V
Torsion of circular shafts:
Stresses, strains and deformations in determinate and indeterminate shafts of solid and hollow homogeneous and composite circular cross section subjected to twisting moment. Derivation of torsion equation. Stresses due to combined torsion, bending and axial force on shafts.
Unit VI

Slope and deflection of Beams:
Relation between BM and slope, slope and deflection of determinate beams, Double Integration Method (Macaulay’s Method). Derivation of Formulae for Slope and Deflection for Standard Cases.

Buckling
Concept of buckling of columns. Derivation of Euler's formula for buckling load for column with hinged ends. Concept of equivalent length for various end conditions. Limitations of Euler's formula. Rankin’s formula. Johnson’s formula, safe load on columns.

Text Books

Reference Books
Unit I
Pattern Making, Molding and Casting
Sand casting, Pattern types, materials, pattern making allowances. Molding sand types, properties and testing, hand and machine molding processes and equipments, core type and manufacturing. Furnaces- types, cupola, construction, operation, zones and chemistry etc. Gating system. Cleaning and finishing of castings. Defects in casting.

Special molding and casting processes
Shell molding, investment casting, die casting (Hot & Cold chamber), centrifugal casting, and continuous casting.

Unit II
Hot Working and Cold Working Processes

Unit III
Joining Processes

Unit IV
Lathes
Introduction to Lathe, types, construction, specifications, accessories, various mechanisms, various operations such as taper turning, eccentric turning, thread cutting. Concept of Speed, Feed, Depth of cut, process parameters, machining time estimation. Single point cutting tool geometry.

Unit V
Milling Machines

Drilling Machines
Fundamentals of drilling processes, Types of drilling machines, operations performed on drilling machine. Tool holders, types of drill, drill geometry, process parameters, machining time estimation. Reaming processes, types of reamers, and geometry. Tap and its geometry.
Unit VI
Grinding Machines
Abrasives types, grinding wheels, wheel making, marking, selection, mounting, types of grinding machines, grinding faults.

Special grinding machining, Honing, Lapping, Super finishing, Buffing, Burnishing.

Term Work
Term work includes, working/ demonstration on lathe and other machine and writing the journal based on following.

1. Report on industrial visit to any casting/ foundry industry.
2. Study / demonstration of hot/cold working operations.
3. Use of arc welding machine for sample weld.
4. Demonstration on gas welding process.
5. Demonstration on milling machine for gear cutting, use of indexing mechanism with calculations.
6. Performing plane and taper turning of simple job on lathe, preparation of process sheet, selection of tools.
7. Demonstration of operations such as threading, knurling, boring etc on lathe.
8. Carrying out operations on drilling machine. Assignment in journal will include sketch and description of machine, job performed.
9. Assignment on grinding with demonstration on sharpening of single point cutting tool.

Text Books

Reference Books

211083 Material Science

Teaching Scheme
Lectures: 4 Hrs/Week
Practical: 2 Hrs/Week

Examination Scheme
Theory: 100 Marks
Term Work: 50 Marks

Unit I
Introduction

Unit II
Material Testing:
(a) Destructive Testing
(b) Non-destructive tests

Unit III
Equilibrium diagrams

Unit IV
Strengthening Mechanisms
Refinement of grain size, Solid solution hardening, Dispersion hardening, Age hardening, Martensitic transformation, Composite materials etc.
Pyrometry
Principle, Operation and uses of various pyrometers like thermocouples Resistance pyrometer, Disappearing filament pyrometer, Total radiation pyrometer.

Unit V
Methods of Surface Improvements and Corrosion Prevention
Corrosion Prevention Methods: Design and material selection, atmosphere control, electroplating, Inhibitors, Cathodic and anodic protection, Coatings etc. Introduction to surface modification techniques such as Electro deposition, Diffusion coatings, Vapor deposition Thermal Spray Coatings, Ion implantation etc.
Unit VI

Powder Metallurgy

Process in brief, powder characteristics, powder manufacturing, Production of sintered structural components such as self lubricated bearing, cemented carbide tools, cermets, refractory metals, electrical contact materials, friction materials, Diamond impregnated tools etc

Term Work: Term work shall consist of following experiments.

List of Experiments:
1) Tensile test on mild steel and aluminum test pieces.
2) Compression test on cast iron and brass test pieces.
3) Brinell hardness test on different materials.
4) Poldi hardness test on different materials.
5) Vickers hardness test on different materials
6) Rockwell and Rockwell superficial test on different materials with different Scales.
7) Izod and Charpy impact tests.
8) Erichsen cupping test on minimum three different sheet metal samples.
9) Non- destructive testing - Magnaflux testing, Dye penetrant test, ultrasonic testing, eddy current testing

Text Books

Reference Books
8. Catalogue of reputed manufacturers

Teaching Scheme:
Lectures: 2 Hrs/Week
Practical: 2 Hrs/Week

Examination Scheme:
Term Work: 50 Marks
Oral: 50 Marks

Unit-I (4)
Conventions in Machine Drawing
Introduction to machine drawing. Dimensioning technique for machine components. Conventional representation of machine components as per IS code: SP-46 such as screw threads, springs, gears, bearing, tapped holes, knurling, splined shafts, tapers, chamfers, countersunk and counter bores, keys, & welded joints.

Surface Roughness
Introduction, terminology, machining symbol with all parameters, roughness values (Ra) and roughness grade numbers, indicating surface roughness on drawing.

Unit-II (4)
Tolerances & Fits
Definitions applied to tolerances, types of tolerance, types of fits, fit system. Geometrical tolerances – Nomenclature, tolerance frame, types of geometrical tolerances & their symbols, indicating geometric tolerances on drawing.

Standard Fasteners & Rivets.
Thread terminology, thread forms, thread designations, single and multi-start threads, right and left hand threads, types of screws, bolts and nuts, nut locking arrangements using pins, washers & screws.

Rivets: forms & proportions of rivet heads, types of riveted joints.

Unit-III (4)
Assembly & Details of Machine Parts
Introduction to assembly & part drawing, examples-Revolving Centers, Machine Vice, Tool post, Screw Jack, jigs & fixtures, tailstock, Cotter Joint, Knuckle Joint, Flange Joint, Rigid and Flexible Coupling, Drawing reading. – Title block, part list / bill of material, revision block etc.

Unit IV (4)
Basics of computer graphics
Software configurations, functions of graphics package, constructing the geometry, mathematical representation of various graphics elements such as line, circle, rectangle, ellipse, arc, spline etc.

2-D transformations
Geometric transformations, translations, rotation, mirror, concatenations.

Unit V (4)
Fundaments of solid modeling
Geometry and topology use of primitives in solid modeling, Basics of Boolean operations, and representations schemes of solids, B-rep and CSG, Development of simple solids.
Unit VI

Autolisp programming:
Introduction to Autolisp, data types in Autolisp—integers, Real numbers, strings, Data type conversion, Math functions, logical functions, working with list and entities, filtering from lists, entity handling, list operators, string functions, branching and looping, introduction to visual lisp. Parametric programming.

Term Work:
The term work shall consist of sketches following drawn in the sketchbook. Sketches of conventional representation of machine components as per IS code: SP 46 such as screw threads, tapped holes, holes on circular pitch, bearing, knurling, splined shafts, springs, gears, tapers, chamfers, countersunk and counter bores, keys, welded joints, structural sections in the sketch book.
Also the term work shall consist of a computer printouts of following exercises:
1. Printout on Half imperial drawing sheet - Conventional Representation of Machine Components as per IS Code: SP 46 such as Screw Threads, Tapped Holes, Holes on Circular Pitch, Bearing, Knurling, Splined Shafts, Springs, Gears, Tapers, Chamfers, Countersunk And Counter Bores.
5. 2D transformation of a simple two dimensional component.

Text Books

Reference Books
3. Auto LISP Reference Manual”.
203050 Electrical Technology

Teaching Scheme:
Lectures: 4 Hrs/week
Practical: 2 Hrs/week

Examination Scheme:
Theory: 100 Marks
Term work: 25 Marks

Unit I (8)

a) **Electrical Power Measurement**: Measurement of active power in three phase balanced loads by using one wattmeter & two wattmeter, Concept of reactive power using two wattmeter, effect of power factor on wattmeter readings.

b) **Electrical Energy Measurement**: Single Phase and three phase energy meter, construction and Working. Use of CT & PT for measurement of Power / Energy in single phase and three phase system (Theoretical Treatment only). Standard specifications of single and three phase energy meter, CT & PT for LT & HT measurements.

c) **Tariff**: Introduction, objectives & Details of H.T. and L.T tariff, TOD tariff, advantages and improvement of power factor (Theoretical Treatment only)

d) **Illumination**: Various terms related to illumination, types and requirement good lighting scheme, special purpose lighting.

Unit II (8)

a) **Single phase transformer**: Types, KVA rating, approximate equivalent circuit, voltage regulation and efficiency of transformer, condition for maximum efficiency.

b) **Three phase transformers**: Types of transformer connection (star/star, star/delta, delta/star, and delta/delta) and applications based on connections. (Theoretical Treatment only)
 Introduction of power transformer, distribution transformer, study of typical distribution transformer substation, specifications of transformer (KVA rating, voltage ratio, current rating)

c) **Three phase Induction Motor**: Constructional feature, working principle of three phase induction motors, types; torque equation, torque slip characteristics; power stages; efficiency; types of starters; methods of speed control, Industrial applications.

Unit III (6)

a) **Single phase induction motors**: Types, construction, working principle of split phase and shaded pole type induction motors, applications. Specifications of induction motors (KW rating, rated voltage, current rating, frequency, speed, class of insulation)

b) **Synchronous Generator**: Constructional features, (Salient and non- salient),working principle, e m f equation, synchronous speed of an alternator, concept of synchronous reactance and impedance, phasor diagram of loaded alternator, voltage regulation of alternator by direct loading method and synchronous impedance method. Specifications of synchronous generator

Unit IV (6)

D.C. Machines
Construction, working principle of D.C. generator, emf equation of D C generator. (Theoretical concept only).

Special purpose motors: Construction, working principle, characteristic and applications of stepper motors, A.C. and D.C servomotors, universal motors.

Unit V

Semiconductor power devices:
- **SCR**: Construction detail, V-I Characteristics, Methods to turn ON, switching action during ON & OFF, specification, Concept of commutation of SCR, applications
- **DIAC**: Construction, V-I Characteristics
- **TRIAC**: Construction, V-I Characteristics, turning ON process.
- **MOSFET**: Construction, transfer Characteristics, output characteristics, Methods to turn ON & OFF, applications
- **IGBT**: Construction detail, transfer Characteristics, output characteristics, Methods to turn ON & OFF, applications.
- **GTO**: Construction, working, advantages and disadvantages

Unit VI

Drives: Advantages of Electrical Drives, Individual & Group drives, selection of drives depending on load characteristics.

Speed Control: Single phase full converter fed D.C. Drives, Three phase converter fed D.C. Drives, Chopper Drives, two quadrant & four quadrant chopper drives, stator voltage control of three phase induction motor, frequency control of three phase induction motor, V/F control of three phase induction motor.

Term Work:
A term work shall consist of a record of eight practical of the following:
(Experiment no. 9 & 10 are compulsory, 6 experiments out of expt. No 1 to 8).
1. Speed control of a D. C. shunt motor by armature voltage and flux control methods.
2. Load test on a D. C. shunt motor.
3. Load test on a D. C. series motor.
5. Regulation of an alternator by synchronous impedance method.
6. Regulation of an alternator by direct loading method.
7. Load test on a three phase induction motor.
8. Study of a) D.C. motor starters, b) three phase induction motor starter.
9. Study of V-I characteristics of SCR & TRAIC
10. Study of a distribution transformer substation and HT/LT energy bill.

Text Books

Reference Books
211086 Theory of Machines

<table>
<thead>
<tr>
<th>Teaching scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory: 4 hrs/week</td>
<td>Theory: 100 marks</td>
</tr>
<tr>
<td>Practical: 2 hrs/week</td>
<td>Oral: 50 Marks</td>
</tr>
</tbody>
</table>

Unit I
8
- Basics: Kinematic Link, Types of links, Difference between machines, mechanism and structure, Kinematics pair, Types of constrained motion, Classification of Kinematics pairs, Kinematics chain, Degrees of freedom of mechanisms, Kutzbach and Grubler criterion, Equivalent linkage concept, Inversion of mechanism
- Mechanisms: Straight line mechanisms - Exact straight line and approximate straight line type, Steering gear mechanisms - Davis and Ackerman type.

Unit II
10
- Kinematic Analysis of Mechanisms: (Velocity Analysis)
 - Concept of position, displacement and velocity of a point and link of a given mechanism,
 - Kinematic analysis of mechanisms by -- Relative velocity method, graphical method, analytical method, Instantaneous Center method, (Numerical treatment expected)
- Kinematic Analysis of Mechanisms: (Acceleration Analysis)
 - Concept of acceleration of a point and link of a given mechanism, Kinematic analysis of mechanisms by -- Relative velocity method, graphical method, analytical method, Coriolis Component of Acceleration, Klein’s construction (Numerical treatment expected)

Unit III
8
- Friction and Wear: Laws of friction, Types of friction, mechanism of friction, friction analysis, types of wear, mechanism of wear, wear equation, factors responsible wear and friction, methods of reducing wear, lubrication and its mode, lubrication technique, tribology in metal cutting and working.

Unit IV
8
- Belt Drives: Types of belt drives, Types, Materials used for Belt. Velocity Ratio, Slip, Creep of belt. Length of an open and cross belt drive, Maximum power transmitted, Tension ratio, maximum tension in a belt, Advantage and disadvantages of a V-Belt Drive, Ratio of Driving Tension for V-Belt.

Unit V
8
- Brakes: - Types of brakes, Force analysis of brakes, external and internal expanding shoe brakes, block brakes, band brakes, block and band brakes, Breaking torque. (Numerical treatment expected)
 - Dynamometer: - Different types of Absorption and transmission dynamometers.

Unit VI
6
- Static force analysis of slider-crank mechanism, Theory of compound pendulum, Bifilar and Trifler suspension methods, dynamically equivalent two mass systems, correction couple,
 - Dynamic force analysis of slider crank mechanism (Analytical and Graphical method)
Term Work
1) Study of Straight line mechanisms
2) Velocity analysis of mechanism by Relative velocity, Klein’s construction and ICR method.
3) Acceleration analysis of mechanism by Relative velocity and acceleration (coriolis component), Klein’s construction method
4) Study of friction and wear of materials
5) Study of belt drives.
6) Study of different types of brakes and dynamometer
7) Determine mass MI of rigid body using bifilar and trifler suspension method.
8) Determine radius of gyration & mass MI of rigid body using compound pendulum method

Text Books

Reference Books

Unit I (8)
Theory of Metal Cutting
Cutting tools, tool geometry, concept of speed, feed, depth of cut and cutting action and effect of these on cutting forces. Types of chips, Merchants circle of forces. Estimation of cutting forces, machinability. Tool life for minimum cost and maximum production. Cutting fluids. New technology in metal cutting for higher productivity. Measurement of cutting forces and power required. Design of Cutting Tools – Single point cutting tool, drill,

Unit II (8)
Production Machines
Turret and capstan lathe, automatic and semiautomatic lathe, single & multi spindle automats, setup, tool layout, operation sheet, cam layout, for single spindle automats, concept of transfer lines. Planning, Shaping & Slotting machines.

Unit III (8)
Broaching

Gear Manufacturing
Gear cutting processes- Gear hobbing, Gear shaping, Gear shaving, Gear lapping and gear grinding. Construction and working of the machines.

Thread Manufacturing
Thread cutting, chasers and dies. Thread milling, thread rolling, thread lapping and thread grinding

Unit IV (8)
Introduction to NC, CNC Machines
Introduction to NC, CNC machines, machining centers-Principles, working, advantages and applications. Parts programming.
Introduction to FMS.

Unit V (8)
Sheet Metal Working
Unit VI

Jigs and Fixtures
Introduction, Definitions, elements, basic principles. Introductions to locators and clamping-basic principles, types. Types of jigs and fixtures.

Term Work
Term work consists of following and writing the journal based on the same.
1. Demonstration on chip formation and effect of tool geometry, cutting speed, feed etc. on machining operations.
2. Demonstration of measurement of cutting forces.
3. Demonstration on single spindle automats/ production lathe along with tool layout/cam layout.
4. Preparing part programming & demonstration of same job on CNC lathe.
5. Design and working drawing of drilling jig and milling fixture.
6. Determination of Linear/Angular dimension of a part using precision and non precision measuring instrument.
7. Machine tool alignment test on any one machine like lathe, milling, drilling.
8. Go-NoGo gauge design by Taylor’s principle.
10. Study and application of Profile Projector.

- Before conducting the above practicals, teacher should explain the meaning of Metrology, Precision, Accuracy, Errors in measurement, Calibration, Line & End standard.

Text Books

Reference Books
211088 Design Of Machine Elements

Teaching scheme
- Lectures: 4 hrs/week
- Practical: 2 hrs/week

Examination Scheme
- Theory: 100 marks
- Term Work: 50 Marks

Unit I
Design Process: Machine Design, Traditional design methods, Basic procedure of Machine Design, Requisites of design engineer, Design of machine elements, Sources of design data, Use of standards in design, Selection of preferred sizes.

Simple stresses: Tension, compression, bending and torsion, combined effect of different stresses.

Theories of Failures: Maximum principal Stress Theory, Maximum shear stress theory, Maximum principal strain Theory, Maximum strain energy Theory, Maximum Distortion energy Theory

Design of Simple Machine Parts: Factor of safety, Service factor, Design of simple machine parts—Cotter joint, Knuckle joint, lever and Stresses in curved beams (for circular cross-section only).

Unit II
Shafts: Design considerations in Transmission shafts with spur gear and pulley, splined shafts, Shaft design on strength basis, Shaft design on torsional rigidity basis, A.S.M.E. code for shaft design.

Keys: Classification of keys, Design considerations in parallel and tapered sunk keys, Design of square, flat and Kennedy keys, Splines.

Couplings: Design considerations, Classification, Design of Rigid, Muff coupling, Flange coupling and Flexible bushed pin coupling.

Unit III
Threaded Joints: Bolts under tension, Design of bolts and turn buckle. Eccentrically loaded bolted joint in shear, Eccentric load perpendicular to axis of bolt, Eccentric load on circular base, Torque requirement for bolt tightening.

Welded Joints: Stresses in butt and fillet welds, Strength of butt welds, parallel and transverse fillet welds, Axially loaded unsymmetrical welded joint, Eccentric load in plane of welds, Welded joint subjected to bending and torsional moments

Unit IV
Power Screws: Types of screw threads, multiple threaded screws, Torque analysis with square and trapezoidal threads, Self-locking screw, Collar friction torque, Stresses in power screws, design of screw and nut, design of Screw jack.

Unit V
Mechanical Springs: Types, Applications and materials of springs, Stress and deflection equations for helical springs, Types of ends, Design of helical compression and tension springs, Springs in series and parallel, Concentric helical springs, Helical torsion spring, surge in spring, Multi-leaf spring.
Unit VI

Aesthetic and ergonomic considerations in design of products:-
Basic types of product forms, Designing for appearance – Shape, features, materials and finishes, proportions symmetry, contrast etc. Morgan’s colour code. Ergonomic considerations - Relation between Man, machine and environmental factors. Design of displays and controls. Practical examples of products or equipments using ergonomic and aesthetic design principles.

Design for manufacture:-
General principles of design for manufacture and assembly (DFM & DMFA). Principles of design of castings and forgings, Design for machining, Design for powder metallurgy, Design for welding, cost estimation.

Term Work:
1) Term work shall consist of ONE design projects. Design project shall consist of two imperial size sheets –one involving assembly drawing with a part list and overall dimensions and other sheet involving drawings of individual components. Manufacturing tolerances, surface finish symbols and geometric tolerances should be specified so as to make it working drawing. A design report giving all necessary calculations of the design of components and assembly should be submitted in a separate file. Design projects should be in the form of ‘Design of Mechanical System’ comprising of machine elements studied and topics covered in the syllabus. Design data book shall be used wherever necessary to achieve selection of standardized components.
2) Problem based assignment on each unit

Text Books

Reference Books

211123 Production & Industrial Management I

<table>
<thead>
<tr>
<th>Lectures: 4 Hrs/ Week</th>
<th>Theory: 100 Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit I</td>
<td></td>
</tr>
<tr>
<td>Evolution of Management Practices</td>
<td>(7)</td>
</tr>
</tbody>
</table>

Organization
Definition, Principles, Functions & Types of Organization.

Group dynamics

<table>
<thead>
<tr>
<th>Unit II</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Management</td>
<td></td>
</tr>
<tr>
<td>• The Production function, Operations Concept, Productivity, Objective of Production Management, Elements of Production function.</td>
<td></td>
</tr>
<tr>
<td>• Industrial Engineering- History, Development, Definitions, Functioning & Application of Industrial Engineering, Contribution of various persons to the field of Industrial Engineering.</td>
<td></td>
</tr>
<tr>
<td>• Types of Production (Job, batch etc,) & their characteristics, Degree of repetitiveness & Volume of Production.</td>
<td></td>
</tr>
<tr>
<td>• Facilities (Plant) Location & Layout.</td>
<td></td>
</tr>
<tr>
<td>• Introduction to Production Planning & Control.</td>
<td></td>
</tr>
<tr>
<td>• Process Planning, Maintenance Function.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit III</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method Study</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit IV</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Measurement</td>
<td></td>
</tr>
<tr>
<td>Synthetic & Standard data Methods: Concepts, Introduction to PMTS, MTM1, WFS, & Basic Motion Time Study. MTM2 & Other second Generation Methods, MOST.</td>
<td></td>
</tr>
</tbody>
</table>
Unit V (7)

Motivation

Leadership: Definition, Styles & functions of Leadership. Qualities for good leadership. Role of the Leader.

Entrepreneurship: Concept & Qualities of Good Entrepreneur.

Unit VI
A. Human Resources Management (5)

B. Financial Management. (3)
Types & Sources of Finance, Different Financial Intuitions and their role in Industrial Development.

Text Books

Reference Books
Term work consists of writing the Journal based on following topics after performing minimum of two assignments each.

A) Customization of AutoCAD

Introduction to Auto Lisp.

1) A program for customization of any one Menu using Auto Lisp.

2) A program for customization of any one Toolbar using Auto Lisp.

B) CAD Modeling

1) One assignment based on assembly modeling and drafting of any assembly consisting of at least four to five components with one of CAD packages like Pro- E, Ideas, UG – NX, CATIA, Solid Edge, Solid Works, etc.

2) Surface modeling of at least one component using Pro- E, Ideas, UG – NX, CATIA, Solid Edge, Solid Works, etc.

C) Finite Element Analysis

1) Introduction to Finite Element Analysis and concepts like meshing, Stiffness Matrix, etc with a demonstration using any one of the packages like Nastran, Ansys, Hypermesh, LS Dyna, etc