University of Pune
Structure M.E. Computer(Computer Networks) to be implemented from July-2008

Term-I

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lect.</td>
<td>Pract.</td>
</tr>
<tr>
<td>510301</td>
<td>Applied Algorithms</td>
<td>03</td>
<td>--</td>
</tr>
<tr>
<td>510302</td>
<td>Emerging trends in Computer Architecture</td>
<td>03</td>
<td>--</td>
</tr>
<tr>
<td>510303</td>
<td>Principles and Practices for IT Management</td>
<td>03</td>
<td>--</td>
</tr>
<tr>
<td>510304</td>
<td>Elective-I</td>
<td>03</td>
<td>--</td>
</tr>
<tr>
<td>510305</td>
<td>Elective-II</td>
<td>03</td>
<td>--</td>
</tr>
<tr>
<td>510306</td>
<td>Laboratory Practice-I</td>
<td>--</td>
<td>06</td>
</tr>
<tr>
<td>510307</td>
<td>Seminar-I</td>
<td>04</td>
<td>--</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

Term-II

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lect.</td>
<td>Pract.</td>
</tr>
<tr>
<td>510308</td>
<td>Operating System Design</td>
<td>03</td>
<td>--</td>
</tr>
<tr>
<td>510309</td>
<td>High Performance Database Systems</td>
<td>03</td>
<td>--</td>
</tr>
<tr>
<td>510310</td>
<td>Advanced Software Engineering</td>
<td>03</td>
<td>--</td>
</tr>
<tr>
<td>510311</td>
<td>Elective-III</td>
<td>03</td>
<td>--</td>
</tr>
<tr>
<td>510312</td>
<td>Elective-IV</td>
<td>03</td>
<td>--</td>
</tr>
<tr>
<td>510313</td>
<td>Laboratory Practice-II</td>
<td>--</td>
<td>06</td>
</tr>
<tr>
<td>510314</td>
<td>Seminar-II</td>
<td>--</td>
<td>04</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
Term-III

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>510315</td>
<td>Seminar-III</td>
<td>-- 04</td>
<td>Paper -- TW Oral</td>
</tr>
<tr>
<td>510316</td>
<td>Project stage-I</td>
<td>-- 18</td>
<td>Paper -- TW Oral</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>22</td>
<td>100</td>
</tr>
</tbody>
</table>

Term-IV

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>510316</td>
<td>Project stage-II*</td>
<td>-- 18</td>
<td>Paper TW Oral Marks</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18</td>
<td>150</td>
</tr>
</tbody>
</table>

* : The term work of project stage II of semester IV should be assessed jointly by the pair of internal and external examiner along with the oral examination of the same

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Elective-I</th>
<th>Subject Code</th>
<th>Elective-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>510304 A</td>
<td>Internet Routing Design</td>
<td>510305 A</td>
<td>Wireless Technology</td>
</tr>
<tr>
<td>510304 B</td>
<td>Advanced TCP/IP</td>
<td>510305 B</td>
<td>Information Security Audit and Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Elective-III</th>
<th>Subject Code</th>
<th>Elective-IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>510311 A</td>
<td>Network Programming</td>
<td>510312 A</td>
<td>Infrastructure Management</td>
</tr>
<tr>
<td>510311 B</td>
<td>Network Design, Modeling and Analysis</td>
<td>510312 B</td>
<td>Convergence Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>510312 C</td>
<td>Open Elective(Self Study)**</td>
</tr>
</tbody>
</table>

****: Open elective subject –BOS computer engineering will declare the list of subjects which can be taken under open elective.
1. Introduction to Probability and Problem Solving:

2. Analysis of Algorithms

3. Fundamental Computing Algorithms
Numerical algorithms, Sequential and binary search algorithms. Quadratic sorting algorithms and O (n log n) sorting algorithms. Algorithms on graphs and their complexities.

4. Approximation Algorithms
Introduction, Absolute approximation, Epsilon approximation, Polynomial time approximation schemes, Probabilistically good algorithms.

5. Advanced Algorithmic Analysis
Amortized analysis, online and offline algorithms, randomized algorithms. Dynamic programming: matrix chain multiplication and longest common subsequence, Greedy algorithms: action-selection problem and Huffman codes, combinatorial optimization.

6. Parallel Algorithms

Reference Books:
1. Kishore S. Trivedi, “Probability & Statistics with Reliability, Queing, and Computer Science Applications” PHI
2. Cormen, Leiserson, Rivest, “Algorithms”, PHI
1. Advanced Computer System architecture
Case studies: IBM cluster, Beowulf cluster-caltech, Digital true Unix cluster(springerlink.com/content), next generation clusters- infiniband. MPP - Technology, new generation of MPPs, Distributed memory MPPs, Achieving high performance on NOW
2. System Interconnects:
Basics revised, Gigabit network technologies – Giga Bit Ethernet, Myrient (Myricom), Quadrinet(Quadrics), PARAM net (CDAC), ATM switches & networks – ATM architecture, inter network connectivity
3. Threading, synchronization and communication
Multithreaded Architecture, approaches to multi threading, Software multithreading, Synchronization mechanisms, TCP/IP protocol suite, fast & efficient communication- Log P Communication model, communication algorithms, Case Study: IBM Power IV, V
4. Storage
Storage Area Network (SAN), Network attached storage and direct storage. Storage area network versus system area network, Computer Architecture Research Challenges: How Computer Architecture Trends may Affect Future Distributed Systems
5. Grid Computing
Grid fundamentals – Cluster to grid computing, Grid computing models- ARC model, ARCC model, Sneha-Samuham computing model, Grid architecture considerations, Standards for grid -OGSA, OGSI, OGSA-DAI, Grid FTP, WSRF, Web services related standards, Grid architecture models, Computational grid, Data grid, Grid topologies, Basic methodology
6. Parallel programming:
Paradigms, parallel programming models, shared memory programming, message passing programming – paradigms, MPI, PVM, Threads, Data parallel programming – model, Case study – High performance FORTRAN, CCC, HP Java, Other data parallel approaches

Reference Books
1. Kai Hwang, Zhiwei Xu -"Scalable Parallel Computers"
3. Introduction to grid computing - Bart Jacob, Michael Brown
4. Grid Computing – A research Monograph - D. Janakiram (TMGH)
5. Parallel Programming
6. Storage Networks – Wulfgong Muller (Wiley)
510303 Principles and Practices for IT Management

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 3 Hrs/week</td>
<td>Theory: 100 Marks</td>
</tr>
<tr>
<td></td>
<td>Total Credits : 03</td>
</tr>
</tbody>
</table>

1. **Management Perspectives**
Role and importance of management, process of management – planning, organizing, staffing, directing, controlling. Nature, purpose and principles of management, Business policy, tools and techniques of strategic management, business ethics and social responsibilities

2. **Preliminary planning of an IT Project**
Gathering project Information, defining the project goals, establishing project priorities, requirements analysis, risk management, budgeting a project, creating a work breakdown structure, estimation

3. **Organizing an IT Project**
Organizing a Project Team: - Assessing internal scales, creating a team, managing team issues, resources procurement
Preparing and Implementing the project plan: - Defining the project schedule, project network diagram creation and analysis, project constraints, tracking project progress and financial obligations
Revising the project plan:-need for revision , establishing change control, implementing the project changes, coping with project delays

4. **Group Dynamics and Team Management**
Theories of Group Formation – Formal and Informal Groups and their interaction, Importance of teams - Formation of teams – Team Work, Leading the team, Team Meeting, Conflict Management - Traditional vis-à-vis Modern view of conflict, Conflict Process - Strategies for resolving destructive conflict, Stress management, employee welfare, energy management and energy audit,

5. **Modern approaches to management**
Concept of Knowledge management, change management, technology management, supply chain management, introduction to Intellectual property Rights (IPR)and cyber laws, process and project quality standards – six sigma, CMM, CMMI, PCMM, Impact of IT quality management systems, learning organizations

6. **Applications of IT in management**
Application of IT in functions like finance and accounting, stores, purchase, product design and development, quality control, logistics, customer relationship, marketing, project management, health care, insurance, banking, agriculture and service sector.

Reference Books:

2. Management-Tasks, Responsibilities and practices, Peter Drucker
3. Management Theory and Practice- Ernst Dale
4. Management Information System-Javadekar
5. Business Policy- Azhar Kazmi
1 Networking and Network Routing: An Introduction

2 Routing Algorithms:
Shortest Path and Widest Path: Bellman–Ford Algorithm and the Distance Vector Approach, Dijkstra’s Algorithm, Widest Path Algorithm, Dijkstra-Based Approach, Bellman–Ford-Based Approach, k-Shortest Paths Algorithm.
OSPF and Integrated IS-IS: OSPF: Protocol Features, OSPF Packet Format, Integrated IS-IS, Key Features, comparison
BGP: Features, Operations, Configuration Initialization, phases, Message Format.
IP Routing and Distance Vector Protocol Family: RIPv1 and RIPv2

3 Routing Protocols: Framework and Principles

4. Internet Routing and Router Architectures
Architectural View of the Internet, Allocation of IP Prefixes and AS Number, Policy-Based Routing, Point of Presence, Traffic Engineering Implications, Internet Routing Instability.
Router Architectures: Functions, Types, Elements of a Router, Packet Flow, Packet Processing: Fast Path versus Slow Path, Router Architectures

5. Analysis of Network Algorithms
Network Bottleneck, Network Algorithmics, Strawman solutions, Thinking Algorithmically, Refining the Algorithm, Cleaning up, Characteristics of Network Algorithms.
IP Packet Filtering and Classification: Classification, Classification Algorithms, Naïve Solutions, Two-Dimensional Solutions, Approaches for d Dimensions,

6. Quality of Service Routing

7. Routing and Traffic Engineering

REFERENCES:

1. **Introduction to Client-Server environment**
 Introduction Client-Server model, complexity of servers, RARP servers, UNIX IO paradigm and Network IO, Sending and Receiving data through a Socket, IP address manipulation routines, Obtaining Information about Host, Networks Protocols and Network services.

2. **BOOTP and DHCP** - BOOTP Operations, BOOTP Message format, DHCP Operations, DHCP Message format.

3. **Domain Name System** - Hierarchical Name space, Domain Name Space: Label, Domain name, FQDN, Distribution of Name space: Hierarchy of Name space, Zone, Root servers, DNS in the Internet, Resolution: Mapping Names to Address, Mapping Address to Names, Recursive resolution, Iterative resolution, caching, Types of Record: Resource record, Zone Delegation, Zone Transfer, DDNS

4. **TELNET and Rlogin** - Concept of Telnet, Telnet Protocol and options, Timesharing Environments, Network Virtual Terminals (NVT), Mode of operations, Rlogin

5. **File Transfer Protocol** - FTP, FTP features, process model, TFTP, NFS implementation, RPC.

6. **Simple Mail Transfer Protocol** - SMTP, User Agent, Addresses, Mail Transfer Agent, Mail transfer phases, MIME, Multi part messages, POP.

7. **Hyper Text transfer Protocols** - Architectural components, URL, HTTP transactions, Response Message, Header, WWW

8. **Voice Over IP (RTP)** - Real Time Transfer Protocol, RTP encapsulation, RTP Control protocol, operation, QoS, RSVP.

Reference Books:
3. Karnjit S. Siyan, Inside TCP/IP Techmedia
4. Pete Loshin, TCP/IP Clearly Explained, Morgan Kaufmann Publications
1. Transmission Fundamentals:

2. Antennas and Propagation:

3. Wireless Standards
 IEEE 802.11a/b/g and IEEE 802.15, 16: Introduction to wireless networking, Nomenclature & Design, Types of networks: Satellite, GSM, Network Operation. Challenges for the MAC, MAC Access Modes and Timings, Contention-Based Access using the DCF. 802.11 frames.

4. Wifi & Wi-Max & Bluetooth

5. Advanced Wireless Protocols
 WEP: WEP Cryptographic Operations, WEP Data processing, Problems with WEP.
 EAP: EAP formats, Working of EAP.
 Mobile IP, TCP-Snoop, M-TCP.

References:
 1. Wireless Communications and Networks, William Stallings, Pearson Education.
ELECTIVE- II
510305B Information Security Audit and Management

Teaching Scheme
Lectures: 3 Hrs/week

Examination Scheme
Theory: 100 Marks
Total Credits : 03

Objectives: After completing the course, students will be able to:
- Identify and prioritize information assets
- Identify and prioritize threats to information assets
- Define an information security strategy and architecture
- Plan for and respond to intruders in an information system
- Describe legal and public relations implications of security and privacy issues
- Present a disaster recovery plan for recovery of information assets after an incident

Syllabus

- Introduction to the management of Information security
- Planning for Security
- Planning for Contingencies
- Information security policy
- Developing the Security Program
- Security management Models and Practices
- Risk Management: Assessing and controlling risk
- Protection mechanism
- Personnel and security
- Law and Ethics
- Information Security Project Management

References:
4. Risk Management Guide for Information Technology Systems
5. Contingency Planning Guide for Information Technology Systems
510306 Laboratory Practice – I

Teaching Scheme
Practicals: 6 Hrs/week

Examination Scheme
Term Work: 50 Marks
Total Credits: 03

Experiments/Assignments based on 510302 and 510305 and/or small project. The lab in charge should frame minimum of five assignments.

510307 Seminar – I

Teaching Scheme
Practicals: 4 Hrs/week/student

Examination Scheme
Term Work: 50 Marks
Total Credits: 02

Seminar on state-of-art topic.
510308 Operating System Design

Teaching Scheme Examination Scheme
Lectures: 3 Hrs/week Theory: 100 Marks

1. Overview of Basic Concepts

2. Process Management and CPU Scheduling
 Creation, Suspension and Termination of Processes; Process State Preservation for Restarting a Suspended Process; CPU Scheduling in Uniprocessor and Multiple Processor Systems; Process Migration Policies and Mechanisms; Real-Time Scheduling; Multithreading and Threads Scheduling.

3. Interprocess Communication (IPC)
 Need for IPC among Cooperating Processes; IPC between Processes on a Single Computer System (Shared Memory Approach); IPC between Processes on Different Systems (Message Passing Approach); Synchronous and Asynchronous IPC; Buffer Management Strategies; Group Communication

4. Concurrency and Synchronization
 Need for Concurrency and Mutual Exclusion; Critical Section Problem; Software Approaches for Mutual Exclusion; Hardware Support for Mutual Exclusion; Semaphore; Monitors; Classical Problems of Synchronization.

5. Deadlocks
 System Model; Necessary Conditions for Deadlock, Deadlock Modeling using Resource Allocation Graph and Wait-for Graph; Deadlock Handling Mechanisms – Avoidance, Prevention; Detection and Recovery; Ways for Recovery from Deadlock; Issues in Recovery from Deadlock – Victim(s) Selection, Use of Transaction Mechanism to Rerun a Killed/Rolled-back Process.

6. File Management
 File Management in Multiprocessor Systems – Caching, Replication, and Migration; File Sharing Semantics and Consistency Control Mechanisms; Stateful and Stateless File Servers; Directories and Directory Management.

7. Protection and Security
Access Validation, Granting Rights, Passing Rights and Rights Revocation in Case of ACLs and Capabilities.

8. Case Study: Unix Operating System

Reference Books

510309 High Performance Database Systems

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 3 Hrs/week</td>
<td>Theory: 100 Marks</td>
</tr>
<tr>
<td></td>
<td>Total Credits: 03</td>
</tr>
</tbody>
</table>

1. High performance Issues and concerns in databases, Database Tuning and Performance: benchmarking, TPC benchmarks, object oriented benchmarks; TP Monitors, Object Transaction Management
2. Query Optimization: Physical layer, Access Methods, Query Optimization, DBMS buffers, caches, and optimisation high level query languages and low level primitive operations, join algorithms.
3. Advanced concepts in Transaction Management: ACID properties, pessimistic locking, optimistic locking, flat transactions, nested transactions, deadlock detection and management; Recovery: write-ahead logging, shadow paging; Indexing structures: Btrees, hash files, multi-attribute indexing; Distributed databases, Schemas, Architectures, Queries, Transactions
4. Data warehousing: Heterogeneous information; the integration problem; the Warehouse Architecture; Data Warehousing; Warehouse DBMS, Data Warehouse Models and OLAP operations. ETL, materialized views, Dashboards, BI
5. SQL Extensions: Aggregations, SQL 3, SQL 2006 XML integration
6. Data Mining: KDD process, Data mining applications, Data mining Techniques and Algorithms
7. Emerging trends in databases: Active and Deductive databases, Main Memory databases, OR Databases, Semantic databases
8. Emerging database technology case studies: XML, Hibernate, Directory services and LDAP

Reference Books
4. Jiawei Han, Micheline Kamber, “Data Mining”, Second Edition, Elsevier

510310 Advanced Software Engineering

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 3 Hrs/week</td>
<td>Theory: 100 Marks</td>
</tr>
<tr>
<td></td>
<td>Total Credits: 03</td>
</tr>
</tbody>
</table>

1. Introduction to Software Engineering

2. Design Engineering
Architectural Design, Distributed Systems Architecture, Application Architectures
Object-oriented Design, Real-time Systems, User Interface Design

3. Software Development Methodologies
Iterative Software Development, Software Reuse, CBSE, Critical Systems Development
Software Evolution

4. Software Management
Verification and Validation, Software Testing, Critical Systems Validation, Managing People, Software Cost Estimation, Quality Management, Process Improvement, Configuration Management

5. Alternative Paradigms
Extreme Programming, Agile Software Engineering, Clean Room Software Engineering,
Introduction to Formal Methods, soft systems

6. Advanced Software Engineering Process
Software Process Improvement, Software Economics, Software Quality, Software Metrics, Software Maintenance, Risk management, Requirement Engineering

Reference Books:

ELECTIVE-III
510311A Network Programming

Teaching Scheme
Lectures: 3 Hrs/week

Examination Scheme
Theory: 100 Marks
Total Credits: 03

1. The Transport Layer: TCP and UDP with policy control
 TCP Connection Establishment and Termination, TIME_WAIT State, Port Numbers,
 Concurrent Servers, Buffer Sizes and Limitations.

2. Sockets and Socket Programming
 Introduction, Socket Address Structures, Value-Result Arguments, Byte Ordering
 Functions, Byte Manipulation Functions, socket Function. TCP Client-Server: TCP
 Echo Server, TCP Echo Client, Crashing of Server Host, Crashing and Rebooting of
 Server Host, Shutdown of Server Host. UDP Sockets: UDP Echo server, UDP Echo
 Client.

3. Routing Sockets
 Datalink Socket Address Structure, Reading and Writing, Interface Name and Index
 Functions

4. Name and Address Conversions
 Domain Name System, Functions. Advanced Name and Address Conversions:
 Functions and Implementation

5. IPv4 and IPv6 Interoperability
 IPv4 Client, IPv6 Server, IPv6 Client, IPv4 Server, IPv6 Address Testing Macros,
 IPV6_ADDRFORM Socket Option

6. Multicasting and Broadcasting
 Broadcast Addresses, Unicast versus Broadcast, Multicasting: Multicast Addresses,
 Multicasting versus Broadcasting on A LAN, Multicasting on a WAN, Multicast
 Socket Options, Simple Network Time Protocol, SNTP.

7. Threads
 Thread Functions: Creation and Termination, TCP Echo Server, Thread-Specific Data,
 Web Client and Simultaneous Connections

8. Client-Server Design Alternatives
 TCP Client Alternatives, TCP Test Client, Iterative Server, Concurrent Server, Thread
 Locking around accept, TCP Preforked Server, Descriptor Passing, TCP Concurrent
 Server, One Thread per Client, TCP Prethreaded Server.

Reference Books:
1. Richard Stevens, Bill Fenner, “UNIX network programming Volume-1 -
 The Sockets Networking API”, 3rd edition.
3. UNIX Internals – “A new Frontier”, PHI

ELECTIVE-III

510311B Network Design, Modeling and Analysis

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 3 Hrs/week</td>
<td>Theory: 100 Marks</td>
</tr>
<tr>
<td></td>
<td>Total Credits : 03</td>
</tr>
</tbody>
</table>

1. **Essentials of Probability**

2. **Delay Models in Data Networks**

 Multiplexing of Traffic on a Communication Link, Queuing Models- Little’s Theorem, Little’s Theorem, Probabilistic Form of Little’s Theorem, Application of Little’s Theorem, The M/M/1 Queuing System, Arrival Statistics, Service Statistics, Markov Chain Formulation, Deviation of the Stationary Distribution, Occupancy Distribution upon Arrival, Occupancy Distribution upon Departure, The M/M/m, M/M/∞, M/M/m/m, AND Other Markov Systems, The M/M/m: The m-Server Case, M/M/∞: The Infinite-Server Case, M/M/m/m: The m-Server Loss System, Multidimensional Markov Chains- Applications in Circuit Switching, The M/G/1 System, M/G/1 Queues with Vacations, Reservations and Polling, Priority Queuing

3. **Inside an IMP**

 Queuing in the Network Layer at an IMP, Basic Single Queue Model, Applications of Queuing Analysis Outside of Networking, The Poisson Arrivel Model, Properties of a Poisson Process, Interarrival Times of a Poisson Process, The M/M/1 Queue, Aside: Queuing Notation, Aside: The D/D/1 Queue, State Analysis of an M/M/1 Queue, Balance Equations, Solving the Balance Equations, The Finite Buffer Case: M/M/1/N, Blocking Probability and the Right Size Buffer, Throughput in the Finite Buffer Case, Alternate way to compute throughput of M/M/1/N: Look at the output side, Aside: Derivation of = Using Throughput, Approximation of a Finite Buffer System by the Infinite Buffer Model, How Long is That Line?, Little's Formula and Queuing Delay, Applying Little's Formula to an M/M/1 Queue, Applying the M/M/1 Results to a Single Network Link, Other Queuing Models
4. Network Design
Problem definition: Multipoint line layout heuristics, CMST algorithm, ESAU-William’s algorithm, Sharma’s algorithm, Unified algorithm, Bin packing, Terminal assignments, Concentrator location

5. Network Analysis
Queuing Networks, Closed Queuing Network Example, Nodes in a Packet Switched Network (PSN), Queuing Network Model of Nodes in a PSN, Queuing Network Analysis of a PSN, performance analysis of Data Link Layer, Network layer, QoS,

6. Network Administration
Functions and responsibilities, Network planning and implementation, Sub-netting, Bandwidth management, security issues, Tools for BW and security management, modifying network implementation

Reference Books
5. Stallings W., “High Speed Networks and Internet: Performance and Quality of Service”, Prentice-Hall
ELECTIVE-IV
510112A Infrastructure Management

Teaching Scheme
Lectures: 3 Hrs/week

Examination Scheme
Theory: 100 Marks
Total Credits: 03

1. Infrastructure Management Overview
Definitions, Infrastructure management activities, Evolutions of Systems since 1960s (Mainframes-to-Midrange-to-PCs-to-Client-server computing-to-New age systems) and their management, growth of internet, current business demands and IT systems issues, complexity of today’s computing environment, Total cost of complexity issues, Value of Systems management for business

2. Preparing for Infrastructure Management
Factors to consider in designing IT organizations and IT infrastructure, Determining customer’s Requirements, Identifying System Components to manage, Exsist Processes, Data, applications, Tools and their integration, Patterns for IT systems management, Introduction to the design process for information systems, Models, Information Technology Infrastructure Library (ITIL)

3. Service Delivery Processes
Service-level management, financial management and costing, IT services continuity management, Capacity management, Availability management

4. Service Support Processes
Configuration Management, Service desk, Incident management, Problem management, Change management, Release management

5. Storage and Security Management
Introduction Security, Identity management, Single sign-on, Access Management, Basics of network security, LDAP fundamentals, Intrusion detection, firewall, security information management
Introduction to Storage, Backup & Restore, Archive & Retrieve, Space Management, SAN & NAS, Disaster Recovery, Hierarchical space management, Database & Application protection, Bare machine recovery, Data retention

Reference Books:
1. **Convergence Standards and Protocols:**
 Why Convergence, Identifying benefits of Converged network, Voice Packetization, Voice Compression (G.711,G.726,G.729 Etc), Switching basics, Circuit Switching Vs Packet Switching, Identify capabilities of T carrier systems

2. **Switching Networks:**
 ISDN (Concept, services, architecture, protocol overview etc.), Overview Of Frame Relay Networks, B-ISDN

3. **ATM Technology**:
 ATM VPI and VCI Creation of virtual channels ,Definition of Switched Virtual Circuit and Permanent Virtual Circuit ,Step-by-step PVC example of how an ATM network processes cells ,Step-by-step SVC example of how an ATM network processes cells ,Connection Admission Control (CAC) ,Cell Loss Priority (CLP) ,SVC signaling - Q.2931 ,Adaptation layers from a Voice over ATM perspective ,AAL1 , AAL2 ,AAL5 .

4. **Access Signaling Types:**

5. **VOIP Convergence:**
 IP telephony basics, VOIP and its features and benefits, Overview of VOIP technology (including access gateways), Quality Of service and VOIP.

6. **Network Convergence:**
 Characteristics of the H.323 protocol, Identify the key benefits of Session Initiation Protocol, SIP components and messages, Media Gateway Control Protocol (MGCP), Overview of NetMeeting,

References:
1. Multimedia Communications Directions and Innovations By Jerry Gibson Academic Press
3. VOIP by Ulyess Black
Hill
5. ISDN and Broadband ISDN with Frame relay and ATM 4/e by William Stallings Prentice Hall Publication.

510312C Open Elective (Self Study)

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 3hrs/week</td>
<td>Theory: 100 Marks</td>
</tr>
<tr>
<td></td>
<td>Total Credits: 03</td>
</tr>
</tbody>
</table>

** - BoS Computer Engineering will declare the list of subjects which can be taken under Open elective

510313 Laboratory Practice – II

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practicals: 6 Hrs/week</td>
<td>Term Work: 50 Marks</td>
</tr>
<tr>
<td></td>
<td>Total Credits: 03</td>
</tr>
</tbody>
</table>

Experiments/Assignments based on 510308, 510309, 510311 and/or small project. The lab in charge should frame minimum of five assignments.

510314 Seminar – II

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practicals: 4 Hrs/week/student</td>
<td>Term Work: 50 Marks</td>
</tr>
<tr>
<td></td>
<td>Total Credits: 02</td>
</tr>
</tbody>
</table>

Seminar on state-of-art topic.

510315 Seminar – III

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practicals: 04 Hrs/week/student</td>
<td>Term Work: 50 Marks</td>
</tr>
<tr>
<td></td>
<td>Total Credits: 02</td>
</tr>
</tbody>
</table>

Seminar on Dissertation Topic.

510316 Project Stage – I

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practicals: 18 Hrs/week/student</td>
<td>Term Work: 50 Marks</td>
</tr>
<tr>
<td></td>
<td>Total Credits: 06</td>
</tr>
</tbody>
</table>

Project will consist of a System Development in Hardware/Software. Project work should be carried out using Software Engineering principles and practices.

510316 Project Stage – II

<table>
<thead>
<tr>
<th>Teaching Scheme</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practicals: 18 Hrs/week/student</td>
<td>Term Work: 200 Marks</td>
</tr>
<tr>
<td></td>
<td>Total Credits: 12</td>
</tr>
</tbody>
</table>
** :- The Term Work of Project Stage-II will be assessed jointly by the pair of Internal and External examiner along with oral examination of the same.