Proposed Syllabus for
M.Sc. (Computer Science)
(To be implemented from year 2008-2009)

Course Structure – The entire course is a Two year and Four semester course. For three semesters there will be four theory courses and one Lab course. The last semester will be Industrial training/Institutional project. The Lab course of semester I and semester III and one theory course each from semester II and Semester III are departmental Elective courses.

Every theory paper is evaluated for 80 marks externally and for 20 marks internally except departmental theory courses which are internally evaluated for 100 marks

The lab course is divided into project work and assignments and the break up is given below for each lab course.

The Industrial Project will be graded. The grades are O, A+, A, B+, B, C+, C and D. D grade indicates failure

Semester I:
- CS11-101-Paper I: Principles of Programming Languages
- CS11-102-Paper II: Object Oriented Software Engineering
- CS11-103-Paper III: Distributed Database Concepts
- CS11-104-Paper IV: Design and Analysis of Algorithms
- CS11-105-Paper V: Lab course (Departmental)

Semester II:
- CS12-201-Paper I: Advanced Networking Concepts
- CS12-202-Paper II: UNIX Internals
- CS12-203-Paper III: Software Architecture
- CS12-204-Paper IV: XML .NET Programming (Departmental)
- CS12-110-Paper V: Lab course (University)

Semester III:
- CS23-301-Paper I: Software Metrics & Project Management
- CS23-302-Paper II: Mobile Computing
- CS23-303-Paper III: Information System Security
- CS23-304-Paper IV: Elective (Departmental)
- CS23-305-Paper V: Lab course (Departmental)

Semester IV:
- CS24-401-Industrial Training project
CS-11-101: Principles of Programming Languages

1. Introduction
 • The Art of Language Design
 • The Programming Language Spectrum
 • Why Study Programming Languages?
 • Compilation and Interpretation
 • Programming Environments

2. Non-Imperative Programming Models: Functional, Logic Languages
 Common LISP
 • Basic LISP Primitives (FIRST, REST, SETF, CONS, APPEND, LIST, NTHCDR, BUTLAST, LAST, LENTH, REVERSE, ASSOC)
 • Procedure definition and binding, DEFUN, LET
 • Predicates and Conditional, EQUAL, EQ, EQL, =, MEMBER, LISTP, ATOM, NUMBERP, SYMBOLP, NIL, NULL, IF, WHEN, UNLESS, COND, CASE
 • Procedure Abstraction and Recursion
 • Properties and Arrays

 Turbo Prolog
 • Introduction, FACTs, Objects and Predicates, Variables, Using Rules, Controlling execution fail and cut predicates,
 • Input, Output, Recursion, Operators, Compound Objects, Dynamic Databases, Using LISTS, String Operation, String Operation,

3. Names, Scopes, and Bindings
 • The Notion of Binding Time
 • Object Lifetime and Storage Management: Stack-Based Allocation, Heap-Based Allocation, Garbage Collection
 • Scope Rules
 Static and Dynamic Scope, Symbol Tables, Association Lists and Central Reference Tables
 • The Binding of Referencing Environments
 Subroutine Closures, First- and Second-Class Subroutines, Naming-Related Pitfalls in Language Design, Scope Rules, Separate Compilation

4. Control Flow
 • Expression Evaluation:
 Precedence and Associativity, Assignments, Ordering Within Expressions, Short-Circuit Evaluation
• Structured and Unstructured Flow
• Sequencing
• Selection
 Short-Circuited Conditions, Case/Switch Statements
• Iteration
 Enumeration-Controlled Loops, Combination Loops, Iterators, Logically Controlled Loops
• Recursion
 Iteration and Recursion, Applicative- and Normal-Order Evaluation
• Nondeterminacy

5. Data Types [6]
• Type Systems
 The Definition of Types, The Classification of Types
• Type Checking
 Type Equivalence, Type Conversion and Casts, Type Compatibility and Coercion, Type Inference
• Records (Structures) and Variants (Unions)
 Syntax and Operations , Memory Layout and Its Impact, Variant Records
• Arrays, Strings, Sets, and Lists
• Pointers and Recursive Types
 Syntax and Operations, Dangling References, Garbage Collection
• Equality Testing and Assignment

• Review of Stack Layout
• Calling Sequences
 Case Study: C on MIPS, In-Line Expansion
• Parameter Passing
 Parameter Modes, Special-Purpose Parameters, Function Returns
• Generic Subroutines and Modules
• Exception Handling
 Definition of Exceptions, Exception Propagation, Example: Phrase Level Recovery in a RDP, Implementation of Exceptions
• Coroutines
 Stack Allocation, Transfer

7. Data Abstraction and Object Orientation [6]
• Encapsulation and Inheritance
 Modules, Classes, Type Extensions
• Initialization and Finalization
 Choosing a Constructor, References and Values, Execution Order, Garbage Collection
• Dynamic Method Binding
Virtual- and Non-Virtual Methods, Abstract Classes, Member Lookup and Related Concepts

- Multiple Inheritance
 Semantic Ambiguities, Replicated Inheritance, Shared Inheritance, Mix-In Inheritance

8. Concurrency

- Concurrent Programming Fundamentals
 Communication and Synchronization, Languages and Libraries, Thread Creation Syntax
 Implementation of Threads

- Shared Memory
 Busy-Wait Synchronization, Scheduler Implementation, Scheduler-Based Synchronization, Implicit Synchronization

- Message Passing
 Naming Communication Partners, Sending and Receiving, RPC

Text Books:

1. Programming Language Pragmatics by Michael J. Scott; Morgan Kaufmann Publishers, An Imprint of Elsevier, USA
2. Introduction to Turbo Prolog by Carl Townsend
3. LISP 3rd edition
 By Patrick Henry Winston & Berthold Klaus Paul Horn (BPB)

Reference Books

1. Programming languages - Design and implementation
 By Terrence W. Pratt and Marvin V. Zelkowitz.

2. LISP Primer, Colin Allen, and Maneesh Dhat (Also Available OnLine
 http://mypage.iu.edu/~colallen/lp/node1.html)
1. **Object Oriented Concepts and Principles** [5]

a. What is object Orientation
 Introduction, object, classes and instance, Polymorphism, Inheritance.
 b. Object oriented system development
 Introduction
 Function/data methods
 Object oriented analysis
 Object oriented construction
 Object oriented testing
 c. Identifying the elements of an object model
 Identifying classes and objects
 Specifying the attributes
 Defining operations
 Finalizing the object definition

2. **Introduction to UML** [4]
3. **Basic Structural Modeling** [4]

 Classes, Relationship, Common mechanism, Diagrams, Class diagram

4. **Advanced structural Modeling** [5]

 Advanced classes, Advanced Relationship, Interface, Types and Roles.
 Packages, Object Diagram

5. **Basic Behavioral Modeling** [5]

 Interactions
 Use cases, Use Case Diagram
 Interaction Diagram
 Activity Diagram
 State chart Diagram

6. **Object Oriented Analysis** [8]

 Iterative Development and the Unified process
 Inception
 Understanding requirements
 Use Case Model From Inception to Elaboration
 Elaboration

7. **Object Oriented Design** [6]

a. The Booch Method, The Coad and Yourdon Method and Jacobson Method and Raumbaugh method
b. The Generic components of the OO Design model
c. The system design Process
 a. Partitioning the analysis modal
 b. Concurrency and sub system allocation
 c. The task management component
d. The data management component
e. The resource management component
f. Inter sub system communication
d. Object design process

 Component, Components Diagram
 Deployment Diagram
 Collaboration Diagram

 a. Object oriented Testing Strategies
 b. Test case design for OO Software
 c. Inter Class Test case design

10. case studies [4]

References

1. Software Engineering By Pressman
3. Object Oriented Software Engineering By Ivar Jacobson
4. Applying UML and Patterns By Craig Larman
1. DATABASE TUNING
 - physical database design & tuning

2. INTRODUCTION TO DDBMS
 - Distributed data processing
 - Distributed database systems (DDBS)
 - Promises of DDBMS
 - Completing factors and problem areas

3 DISTRIBUTED DBMS ARCHITECTURE
 - DBMS standardization
 - Architectural models for DDBMS
 - DDBMS architecture and Global directory issues.

4. DISTRIBUTED DATABASE DESIGN
 - Alternative design strategies
 - Distributed design issues
 - Fragmentation and allocation.

5. OVERVIEW OF QUERY PROCESSING
 - Query processing problems
 - Objectives of query processing
 - Complexity of relational algebra operators
 - Characterization of query processors
 - Layers of query processing

6. QUERY DECOMPOSITION & DATA LOCALIZATION
 - Query decomposition
 - Localization of distributed data

7. OPTIMIZATION OF DISTRIBUTED QUERIES
 - Query optimization
 - Centralized query optimization
 - Join ordering in fragment queries.

8. TRANSACTION MANAGEMENT
 - Destination of a transaction
 - Problems of transactions
• Type of transactions
• Architecture revisited

9 DISTRIBUTED CONCURRENCY CONTROL [10]
• Serilizability theory
• Taxonomy of concurrency control mechanisms
• Locking-based concurrency control algorithms
• Timestamp-based concurrency control
• Optimistic concurrency control
• Deadlock management
• Relaxed concurrency

10. Distributed DBMS reliability [8]
• Reliability concepts & measures
• Failures & fault tolerance in distributed systems
• Failures in DDBMS
• Local reliability protocols
• Distributed reliability protocols
• Dealing with site failures
• Network partitioning.

TEXT BOOK

 By M. Tamer Ozsu and Patrick Valduriez Publishers: Person Education Asia

2. Database systems (2nd edition) By Raghuramakrishnan and Johannes

References

1. Distributed Database; Principles & Systems By Stefano Ceri and Giuseppe Pelagatti
 ISBN: 0-07-010829-3
CS-11-104: Design And Analysis of Algorithms

1. Analysis
 Algorithm definition, space complexity, time complexity, worst case –best case – average case complexity, asymptotic notation(O, Ω, θ notation), sorting algorithms (insertion sort, heap sort), sorting in linear time, searching algorithms, recursive algorithms (Tower of Hanoi, Permutations). [6]

2. Design strategies
 Divide and conquer - control abstraction, binary search, merge sort, Quick sort, Strassen’s matrix multiplication [6]
 Greedy method - knapsack problem, job sequencing with deadlines, optimal storage on tapes, optimal merge patterns, Huffman coding. [6]
 Dynamic programming - matrix chain multiplication, longest common subsequence, string editing, 0/1 knapsack problem, Traveling salesperson problem. [8]
 Backtracking - General method, 8 Queen’s problem, Sum of subsets problem, graph coloring problem, Hamiltonian cycle. [2]
 Branch and Bound Technique : FIFO, LIFO, LCBB, TSP problem, 0/1 knapsack problem [4]

Graph algorithms

Problem classification

Text Books

References
2) Donald Knuth, The Art of Computer Programming (3 vols., various editions, 1973-81), Addison Wesley
CS12 -201 Advanced Networking

1. Review of Basic Concepts
 - Network Architecture – Protocol Hierarchies, Layered model, services, interface
 - Reference Models
 - Underlying Technologies

 LAN’s (Ethernet, Token Ring, Wireless), Point-to-Point WAN’s, Switched WAN’s (X.25, Frame Relay, ATM), Connecting devices, Addressing (Physical, Network, Transport)

2. The Internet Layer Protocols
 - IP- Datagram, fragmentation and reassembly,
 - ICMP- types of messages, error reporting, ICMP Package

3. Bootstrap and Autoconfiguration
 - BOOTP and DHCP

4. Routing Protocols
 - Interior and Exterior Routing – RIP, OSPF, BGP
 - Multicast Routing- Unicast, Multicast and Broadcast, Multicasting, Multicast trees

5. The Transport Layer
 - The transport Service- Services provided, Service primitives, Sockets
 - Process-to-Process Communication – Port addresses
 - Elements of transport protocols – addressing, connection establishment, connection release, flow control and buffering, multiplexing, crash recovery
 - UDP – Introduction, Remote Procedure Call,
 - TCP – Service model, Protocol, frame format, connection establishment, release, connection management, Silly Window Syndrome-Nagle’s algorithm, error control, congestion control, state transition diagram

6. Sockets and Client-Server Model
 - Client-Server Model – Concurrency, Processes,
2. Socket Interface – Sockets, Byte Ordering, Socket System Calls, Connectionless and Connection Oriented applications

3. Implementation of Sockets (C/Java etc)

7. The Application Layer

1. DNS, Telnet and Rlogin, FTP, TFTP, SNMP, SMTP, World Wide Web (Client and Server Side, cookies, wireless web), Java and the Internet, Multimedia (streaming audio, Internet Radio, voice over IP - RTP, video standards), Real time traffic over the internet

8. Mobile IP

2. Mobility, routing and addressing, characteristics, operation, foreign agent discovery, registration and communication, two crossing problem, communication with computers on the home front.

9. Introduction to Network Security

3. Cryptography, Symmetric key algorithms, Public Key algorithms, Digital Signatures, Certificates, IPSec, Firewalls, Virtual Private networks, Network Address Translation, Authentication Protocols, Social Issues

Texts

Supplementary useful references:

2. Internetworking with TCP/IP, Vol. 3, Client-server Programming and Applications by Douglas E. Comer, Prentice Hall Publisher. (Excellent reference for distributed programming over TCP/IP networks)

CS-204 – General Lab IIB (Assignments)(Networking)

Lab Assignments

1. Design a LAN with a given set of requirements. The design should include topology, hardware and software requirements like cable, connectors, hubs/switches/bridges, interface cards along with a budget for the LAN. (The course instructor should give the requirements to the students) *(Compulsory)*

Minimum two from the following. Assignments can be done in groups of (2/3).

1. Design and Implement a GUI or text based network monitoring tool to record network statistics like packets sent and received, percentage errors, desktop grabbing, remote monitoring.
2. Design a simple wireless communication system between two computers.

ICMP :

1. Define struct called stateinformation that contains all the local information that an ICMP module needs to access or modify.

2. Define a struct called icmppseudoheader that can hold entries for header needed to calculate the checksum for ICMP. Using this declaration, write a function called ICMPchsum to calculate checksum field for an ICMP packet. The function takes two arguments
 i) pointer to ICMP packet
 ii) pointer to header.

BootStrap and Autoconfiguration

1. Create a header file to include all constants that you think are needed to implement BOOTP algorithm in C. (use #define directive)

2. Create a header file to include all constants that you think are needed to implement DHCP algorithm in C. (use #define directive)
Routing Protocols
1. Write a C code to implement RIP

Transport Layer
1. Write a program to simulate main module of TCP

Socket and Client Server Model
1. Design a client server application for solving roots of a quadratic equation by making use of appropriate API’s

Application Layer
1. Implement FTP / TFTP / SNMP / SMTP
2. Design a chat application with the following features: Single/ Multiline messages, emoticons, single as well as multiple windows, conversation with single and multiple people.
3. Design and implement a firewall for your network. It should have the following facilities: blocking specific IP address, pages with specific content.
1. Introduction to the kernel
- Architecture of the Unix operating system
- Introduction to system concept
- Kernel data structure
- System administration

2. The buffer cache
- Buffer header
- Structure of buffer pool
- Buffer retrieval
- Reading and writing disks block
- Advantages and disadvantages

3. Internal representation of files
- Inodes
- Structure of a regular file
- Directories
- Conversion of pathname to an inode
- Super block
- Inode assignment to a new file
- Allocation of disk block

4. System calls for the file system
- Open
- Read
- Write
- File and record blocking
- Adjusting the position of file I/O – lseek
- Close
- File Creation
- Creation of Special Files
- Change directory and chage root
- Change owner and change mode
- Stat and fstat
- Pipes
- Dup
- Mounting and unmounting file systems
- Link
- Unlink
- File system maintenance
5. The structure of processes 7 lectures
 • Process states and transitions
 • Layout of system memory
 • The context of a process
 • Saving the context of a process
 • Manipulating of a process address space
 • sleep

6. Process control 10 lectures
 • Process creation
 • Signals
 • Process termination
 • Awaiting Process termination
 • Invoking other programs
 • The user-id of a process
 • Changing the size of a process
 • The shell
 • System boot and init process

7. Process scheduling and time 4 lectures
 • Process scheduling
 • System calls for time
 • clock

8. Memory management policies 5 lectures
 • Swapping
 • Demand paging
 • Hybrid system with swapping and demand paging

9. The I/o subsystems 4 lectures
 • Driver interfaces
 • Disk driver
 • Terminal drivers

CS-204 – General Lab IIB (Assignments)(UNIX Internals)

Lab Assignments
1. Design a directory structure that improves the efficiency of searching for pathnames by avoiding the linear search
2. Implement free disk block list with a bitmap instead of linked list
3. Design a scheme that reduces the number of directory searches for file names by caching frequently used names.
4. Redesign getblk and brelse where the kernel follows a FIFO scheme instead of LRU.
5. Design algorithm for allocating and freeing memory page and page tables.
6. Many process can sleep on an address but the kernel may want to wakeup selected processes that receive a signal assuming that the signal mechanism can identify the particular processes, remonify the wakeup algorithm so that only one process is woken up on a sleep address instead of all the processes.
7. Implement a new system call newpgrp(PID, ngrp), that resets the process group of another process identified by the process ID PID to ngrp.
8. Implement a new system call nowait(PID) where PID identifies a child of the process issuing the call when issuing the call the process informs the kernel that it will never wait for the child process to exit, so that the kernel can immediately cleanup the child process slot when the child dies.
9. Any one assignment on windows internal (Compulsory)
(Note : These are the sample assignments. More assignments can be given. Each student is supposed to do a minimum of 5 assignments)
CS12-203 Software Architecture

1. The Big Picture – How it all fits in?
 - UML \(\rightarrow \) The Notation
 - How various components fit in the life cycle
 - The artifacts at end of each process / discipline

2. Software Architecture:
 - What Software Architecture is and what it isn’t.
 - Why is architecture important?
 - Architectural structures and views

3. Architectural Styles:
 - Architectural Styles
 - Pipes and Filters
 - Data Abstraction and Object – Oriented Organization
 - Event-Based, Implicit Invocation
 - Layered Systems
 - Repositories
 - Interpreters
 - Other familiar Architectures
 - Heterogeneous Architectures.

4. Patterns:
 - What is a Pattern & Design Pattern.
 - What makes a Pattern. (GOF)
 - Describing Design Patterns.
 - Pattern Categories & Relationships between Patterns.
 - Organizing the Catalog.
 - Patterns and Software Architecture.

5. Study of Design Patterns:
 - Creational Patterns-singleton, factory method, abstract factory
 - Structural Patterns-adapter, decorator, facade
 - Behavioral Patterns-iterator, observer, strategy, command and state
 (study of intent, applicability, participants, structure, collaboration and consequences)
 - GRASP(General Responsibility Assignment Software Patterns: Patterns for Assigning Responsibilities
 - Expert, Creator, High Cohesion, Low Coupling, Controller, Polymorphism, Pure Fabrication, Indirection, Don’t Talk to Strangers.
6. Study of Frameworks:

- Frameworks as reusable chunks of architecture,
- The framework lifecycle, development using frameworks,
- Struts for Identify the MVC (Separation of layers)
- Configuration
- Declarative error handling
- Validation Framework
- Interaction with web application
- Case Study
- Use of Front controller & Service to worker patterns.
- Web Architectures
- Available
 - Baracudda, Webworks, Velocity, Struts etc.
- Selection of proper framework
- Comparing Frameworks.
- Advantages of Struts.

7. Components:

- Development using components, composition, components as units of deployment, different approaches to components (e.g. OMG, Microsoft, Sun), developing components.

8. Case Study (struts)

- Take a Framework and find Patterns in the Framework.
- Benefits of Patterns in the chosen Framework
- How Pattern interact in the selected Framework.

Reference Books

- Design Patterns – Elements of Reusable Object-oriented Software By E. Gamma, Richard Helm, Ralph Johnson , John Vlissides (GoF)
- Struts By Chuck Canvass.
- Pattern – Oriented Software Architecture (POSA) Volume 1.
 By: Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal.
- Applying UML and Patterns By Craig Larman.
- Software Architecture- Perspectives on an emerging discipline by Mary shaw and David Garlan
CS-12-204-XML.NET programming Syllabus

1. Introduction to XML
2. How is XML used?
3. Rules of XML
4. XML Syntax
5. XML Declarations
6. XML tags
7. XML Document
 - Elements
 - Tags and attributes
 - Entity references
 - Comments
 - Processing instructions
 - CDATA sections
8. Well Formed XML Documents
9. XML DTD’s
10. XML DOM
11. Using XML Parser
12. XSL

.NET Syllabus

- Chp 1. The philosophy of .Net
 - Introducing building blocks of the .Net Platform
 - Overview of .Net Assemblies
 - Role of CIL
 - The role of .NET type metadata
 - Assembly Manifest
 - Understanding CTS, CLS, CLR
- Chp2 The C# Programming language
 - System.Console Class
 - Method Parameter modifiers
 - Value Types and Reference types
 - Boxing and Unboxing Operations
 - .Net Enumerations
 - System.Object
 - System Data Types
 - System.String Data Type
 - .Net Array types
- Chp3 Object-Oriented Programming with C#.
 - C# Class Type
 - C#’s Encapsulation services
 - C#’s Inheritance support
 - Programming for Containment/Delegation
 - C#’s Polymorphic support
• Chp4 Understanding Object Lifetime
 – Understanding Generations
 – The System.GC type
 – Building finalizable objects
 – Building disposable objects

• Chp5 Exception Handling
 – Role of .NET exception handling
 – Configuring the state of Exception
 – System Level Exceptions
 – Application level Exceptions

• Chp6 Interfaces and Collections
 – Implementing interface in C#
 – Interfaces as parameters
 – Arrays of Interface type
 – Building Interface Hierarchies

• Introducing .NET Assemblies
 – Role, Format of .NET Assembly
 – Single-File, Multiple-File Assemblies
 – Private Assemblies
 – Shared Assemblies

• Chp7 Type Reflection, Late Binding, and Attribute-based programming
 – Necessity of Type Metadata
 – Understanding Reflection
 – Building custom metadata viewer
 – Understanding Late Binding
 – Understanding Attributed programming

• Chp8 Building multithreaded applications
 – Role of Thread Synchronization
 – The Asynchronous nature of delegates
 – The System.Threading.Thread Class

• Chp9 The System.IO Namespace
• Chp10. System.Windows.Forms
• Chp11. Database Access with ADO.NET
 – ADO.NET Data providers
 – The System.Data Types
 – Understanding Connected layer of ADO.NET
 – Understanding the Disconnected layer of ADO.NET

• Chp12. ASP.NET Web Pages and Web Controls
• Chp13. ASP.NET 2.0 Web Applications.

Reference:
1. Pro C# 2005 and the .NET 2.0 Platform – Andrew Troelson
2. CLR via C# - Jeffery Richter
CS-23-301 Software Metrics & Project Management

1. What is Project? What is Project management? Project phases and project life cycle, organizational structure, Qualities of Project Manager. [4]
2. Project Management Components.
 Project Integration Management- Project plan development and execution, change controls, configuration management. [6]
3. Scope Management- Strategic planning, scope planning, definition, verification and control. [4]
4. Time management- Activity planning, schedule development and control. [2]
11. Software Metrics- The scope of software metrics, software metrics data collection, analyzing software data, measuring size, structure, external attributes. [6]
13. Planning a measurement program.
 What is metrics plan?: Developing goals, questions and metrics.
 Where and When: Mapping measures to activities.
 How: Measurement tools.
 Who: Measurers, analyst, tools revision plans. [4]

References
1. Information Technology Project Management
 By - Kathy Schwalbe.
2. Software Metrics A rigorous and practical approach
 By – Norman Fenton, Shari Lawrence Pfleeger.
Prerequisites
- Concepts of multiplexing and modulation
- Concepts of Networking
- Conversant with OS internals
- Familiar with event handling
- Web browsers
- Create and Compile Java Programs
- Brief History of wireless communication

Objectives
- To familiarize the students with the buzz words and technology of mobile communication
- Understand the GSM architecture
- Understand the issues relating to Wireless applications

1. Introduction to Mobile Computing Lectures 2
 i. Introduction and need for Mobile computing
 ii. Mobility and portability
 iii. Mobile and Wireless devices
 iv. Applications
 v. Brief History of wireless communication

 Book1: Mobile Comm. By Jochen Schiller

2. Wireless Transmission Lectures 3
 i. General Concepts of multiplexing and modulation
 ii. Spread Spectrum
 iii. Cellular Systems
 iv. Cellular Phone Array
 v. Mobile Phone Technologies (1G, 2G, 2.5G, 3G)

 Book1: Mobile Comm. By Jochen Schiller

3. Medium Access Control Layer Lectures 4
 i. Why specialized MAC?
 - hidden and exposed terminals
 - near and far terminals
 ii. General Concepts and comparison of SDMA, FDMA, TDMA, CDMA

 Book1: Mobile Comm. By Jochen Sciller

4. Global System for Mobile Comm. Lectures 9
i. Mobile Services (Bearer, Tele-and-supplementary services)

ii. System Architecture
 - Radio subsystem
 - Network and switching subsystem
 - Operation subsystem

iii. Protocols
 - Localization and calling
 - Handover

iv. Value Added Services
 - SMS
 Architecture, Mobile Originated and Mobile Terminated procedures
 - Cell Broadcast Service
 Architecture, Message Transfer Procedure
 - MMS
 Architecture, Protocol framework, Message Transfer Procedure
 - Location Services
 Logical Reference Model, Control Procedures, Network Architecture, determination of Location Information, Location based services

v. GPRS
 Book1: Mobile Comm. By Jochen Schiller
 Book5: 2G Mobile Networks: GSM and HSCSD By Nishit Narang and Sumit Kasera

5. Mobile IP
 Lectures 12
 i. Goals, assumptions and requirements
 ii. Entities and terminologies
 iii. Agent Discovery
 iv. Registration
 v. Tunneling and encapsulation
 vi. Reverse Tunneling
 vii. IPv6
 viii. IP micro-mobility support – Cellular IP, Hawaii, Hierarchical mobile IPv6
 ix. Mobile Routing:
 Destination sequence distance Vector, Dynamic Source Routing, Alternative Matrix, Adhoc Routing Protocols -Flat, Hierarchical, Geographic-position-assisted
 Book1: Mobile Comm. By Jochen Schiller

6. Mobile TCP
 Lectures 6
i. Traditional TCP
 - Congestion Control, Slow start, Fast retransmit / Fast recovery
 - Implications on mobility
ii. Classical TCP improvements
 Indirect TCP, Snooping TCP, Mobile TCP, Fast retransmit / Fast recovery, Transmission / Timeout freezing, Selective Retransmission, Transaction oriented TCP
iii. TCP over 2.5/3G wireless networks

Book1: Mobile Communications By Jochen Schiller

7. Wireless Application Protocol
 Lectures: 7
 i. Architecture
 ii. Wireless datagram protocol
 iii. Wireless transport layer security
 iv. Wireless transaction protocol
 v. Wireless session protocol
 vi. Wireless application environment
 vii. WML
 viii. WML Scripts
 ix. Push Architecture
 x. Push – Pull Services

Book1: Mobile Communications by Jochen Schiller

8. Platform/Operating Systems
 Lectures 1
 i. Palm OS
 ii. Windows CE
 iii. Embedded Linux
 iv. J2ME (Introduction)
 v. Symbian (Introduction)
 vi. File Systems (Book1)

Book2: Pervasive Computing
Book1: Mobile Comm. By Jochen Schiller

9. Java for Wireless Devices
 Lectures 1
 i. Setting up the development environment
 ii. Basic Data types, Libraries (CLDC, MIDP)
 Any J2ME book

10. UI Controls
 Lectures 3
 i. Displayable and Display
 - Image
 - Events and Event Handling
- List and choice
- Text box
- Alerts

Any J2ME book

11. Persistent Storage Lectures 2
 i. Record Stores
 ii. Records
 iii. Record Enumeration
 Any J2ME book

12. Network MIDlets Lectures 2
 i. The Connection Framework
 ii. Connection Interface
 iii. Making a connection using HTTP
 iv. Using datagram connection
 Any J2ME book

13. Wireless Messaging
 i. Architecture for Messaging application
 ii. Messaging API
 iii. Types of applications
 iv. Pro’s and con’s of messaging

References: http://java.sun.com/products/wma
 http://forum.nokia.com

Books
2. Pervasive Computing Technology and Architecture of Mobile Internet Applications
 Jochen Burkhardt, Dr. Horst Henn, Steffen Hepper, Klaus Rintdorff, Thomas Schack, Pearson Education
3. Wireless Java Programming with J2ME
 Yu Feng and Dr. Jun Zhu, Techmedia Publications, 1st edition
4. Complete Reference J2ME
5. Mobile Networks GSM and HSCSD
 Nishit Narang, Sumit Kasera, TataMcGrawHill
6. Mobile Computing
 Asoke K Talukdar, Roopa R. Yavagal, TataMcGrawHill
CS23 - 303 Information Systems Security

Objectives of the Course:
1. To enable students to get sound understanding of Info-Sys-Security, Net-Security, Cryptography.
2. To equip with knowledge and skills necessary to support for their career in Information Security.
3. To develop attitude and interest along with necessary knowledge and skills among the students to encourage them to do further academic studies / research in this area, after the completion of their M.Sc. Course.

1. Conceptual foundation of Information Systems Security:

4. Public Key Encryption: Principles of public key crypto-systems, mathematical foundation, RSA algorithm, key management, Deffie-Hellman key exchange, Elliptic curve cryptography, Digital Signatures using DSA (Digital Signature Algorithm), DSS (Digital Signature Standard) and RSA [8]

5. Message Integrity techniques: MD5, SHA [2]

6. PKI (Public Key Infrastructure) and Trust Hierarchy, Digital Certificates, transaction certificates [4]

7. Authentication techniques: passwords, pass-code, pass-phrase, challenge-response, biometrics-based registration and authentication, Kerbores (04 lectures)

9. Server Security: Concepts, Design and Implementation of Firewalls, Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS), etc. This should also include detailed study of at least one free Firewall, IDS, IPS products with demonstrations [6]

10. Virus Threats including Network Viruses, Worms, etc. [2]

11. Data Hiding and Steganography [1]

For Internal Evaluation

12. Security and Audit implementation in various Operating Systems (at least one Desktop OS and at least one Network OS should be discussed)

13. Security and audit implementation in RDBMS (at least one RDBMS product should be discussed)

Recommended Readings (Text and Reference):

1. Atul Kahate, "Cryptography And Network Security" TMH

1. DATA MINING -INTRO.
 Data mining - intro.- information and production factor- datamining Vs query tools - data mining and marketing -self learning computer system-computer learning-data learning, data mining and data warehouse.[9]

2. Knowledge discovery process

3. Data warehouse - architecture
 Data warehouse arch.- system process-process arh, - design - database schema- partitioning startegy-aggregations - data marting-meta data-system and data warehouse process managers.[8]

4. hardware and operational design.
 hardware and operastional design of data warehouse - hardware arch-physical layout-security-backup and recovery-service level aggrement-operating the data warehouse.[9]

5. Planning, tuning and testing
 Capacity planning- tuning the data warehouse- testing the data warehouses-data warehouse features.[9]

Books

1. Pieter adriaans, Dolf, Zantinge, "Data mining" Addison Wesley"
2. Sam anahory , Dennis Murray "Data Warehousing in real world" Addison Wesley.
1. INFORMATION ENTROPY FUNDAMENTAL
 Relation between information and probability, mutual and self info., info. entropy, Shannon's theorem, code design, Shannon-Fano coding, Huffman coding, Implementation of Huffman code.[9]

2. Data and voice coding.
 Context dependent coding, arithmetic codes, overall efficiency consideration, Voice coding, delta modulation and adaptive modulation, linear predictive coding, silence coding, sub-band coding.[9]

3. Image and video compression
 Direct cosine transform, Quantization laws, laws estimation. JPEG components and standards, inter frame coding, motion compensation techniques, MPEG-2 standards, Introduction MPEG-4.[9]

4. Error control coding
 Backward error correction linear block codes, BCH codes, Golay Codes, Efficiency of LBC, performance of simple ARQ go-back-n and selective repeat schemes forward correction codes, convolution coding decoding algo. Viterbi decoding optimum decoding performance measures.[9]

5. Encryption coding
 Transposition and substitution coding, data encryption standards (DES), Key distribution problem, Public key encryption, Public key decryption, and MIT algo., Direct sequence CDMA based encryption, orthogonal sequences, R-S codes.[9]

BOOKS
1. Viterbi, Information theory and coding, Mcgraw-hill
2. Proakis, Digital communication Mcgraw-Hill
3. Data compression book, BPB Publication
1. Introduction
 Soft computing paradigms-Neural network-Fuzzy logic-derivation free optimization methods of Genetics algo.-soft computing characteristics.[7]

2. Fuzzy logic
 sets-properties-arithmetics-member functions- fuzzy relations-relation equations-fuzzy measures-types of uncertainty-members of uncertainties-measures of fuzziness-probabilitiesVs possibilities-measures of fuzzy events.[10]

3. Neural computing
 neuron modelling- learning in simple neuron-perception earning curve-proof-limitations of perception.[10]

4. Neural networks

5. Genetic algo
 Introduction- Biological terminology-search space and fitness land scapes-elements of genetic algorithms -Genetic algo in problem solving.[6]

Boosk
2. Simon Haykin " Neural networks - A comprehensive foundation" PHI
DE-304 MODELLING AND SIMULATION

1. SIMULATION CONCEPTS
 - Systems, modelling, general system theory, concept of simulation, simulation as a decision making tool, types of simulation.[3]

2. Random numbers.
 - Pseudo random numbers, methods of generating random varieties, discrete and continuous distributions, testing of random numbers.[5]

3. Design of simulation experiments
 - Problem formulation, data collection and reduction, time flow mechanism, key variables, logic flow chart, starting condition, run size, experimental design consideration, output analysis and interpretation validation.[8]

4. Simulation language
 - Comparison, and selection of simulation languages, study of any one simulation language.[14]

5. Case studies
 - Development simulation models using the simulation language studied for systems like queueing systems, production systems, inventory systems.[15]

BOOKS
1. Jerry Banks and John, S. Carson, "Discrete event system simulation" PHI
Windows Internal

1. Architectural Overview
 - Historical Perspective
 - Design & Features
 - Product Packaging
 - OS Architecture
 - Kernel Mode Components
 - User Mode Components

2. HAL & Kernel
 - System Architecture
 - HAL & Kernel Functionality
 - Interrupt & IRQL
 - DPC & APC
 - MP Synchronization
 - Synchronization Objects
 - System Service Dispatching
 - Exception Handling

3. Process Manager
 - Job, Process, Thread & Fiber
 - Thread States
 - Priority & Quantum
 - UP & MP Scheduling
 - PE File Format

4. Memory Manager
 - Virtual Address Space
 - Address Translations
 - PFN Database
 - Memory Allocation
 - Page Faults & Mapped Files
 - Section Objects & PPTEs
 - Cache & TLB
 - AWE, PAE, Win64, NUMA

5. Object Manager
 - Executive Objects
 - Object Structure

6. Registry
 - Registry Concepts
 - Registry Organization
 - Registry Storage

7. Services
 - Service Architecture
 - Service Control Manager
 - System Services
 - SVCHOST
Reference Books.

1. The design of the unix Operating System
 By Mauris Bach

 By Mark E. Russinovich, David A. Solomon

 (Microsoft Programming Series)
 By David A. Solomon, Mark E. Russinovich

Site for windows internal syllabus
www.codemachine.com/WindowsInternals
DE-305 EMBEDDED SYSTEM PROGRAMMING

Chapter 1 Introduction to ES

- What is ES
- Examples of ES
- Inside ES: processor, memory, peripherals, software

Chapter 2 Embedded Processors, Memories & Peripherals

- Microcontrollers 8051
- Discrete processors: 8-bit architecture, 16/32 bit CISC, RISC, DSP
- Integrated processors: ARM RISC
- Choosing a processor
- Memory systems: types (SRAM, DRAM, FLASH), organization, access time, validating the contents of memory
- Basic peripherals: parallel ports, timers, clocks

Chapter 3 Real time system concepts

- Foreground/background systems
- Critical section of code
- Resource, shared resource
- Multitasking, task, task switch
- Kernel, scheduler, non-preemptive kernel, preemptive kernel
- Reentrancy, round-robin scheduling
- Task priority, static priority, dynamic priority, priority inversions, assigning task priorities
- Mutual exclusion, deadlock, synchronization, event flags, intertask communication
- Interrupts: latency, response, recovery, ISR processing time, NMI

(For ‘C’ implementation of above concepts, please refer to chapters 4,5,6,7 of the book “An Embedded Software Primer” by David E. Simon published by Pearson Educations)

Chapter 4 writing software for embedded systems

- The compilation process: compile, link, load
- Cross compilers
- Run-time-libraries: processor dependent, I/O dependent, system calls,
exit routines
- Writing a library, using alternative libraries
- Porting Kernels
- C extensions for embedded systems
- Buffering and other data structures

Linear buffers, Directional buffers, Double buffering, Buffer exchange, Linked lists, FIFO, Circular buffers, Buffer underrun and overrun, Allocating buffer memory, Buffer leakage
- Downloading

Chapter 5 Emulation and Debugging techniques

Debugging techniques: HLL simulation, low level simulation, on-board debugger, task level debugging, symbolic debug
Emulation
Optimization problems

Chapter 6 Basic design using RTOS

- Overview
- Principles
- Example
- Encapsulating semaphores and queues
- Hard real time scheduling considerations
- Saving memory space
- Saving power

Chapter 7 Real time without RTOS

- Choosing the SW environment
- Deriving real time performance from non-real time system
- Scheduling and data sampling
- Controlling from an external switch
- Problems

Reference books:

1. Embedded Systems Design – Steve Heath
2. Programming Embedded Systems – Michael Barr
3. Embedded Systems Building Blocks – Jean J. Labrosse