
 1 

 

F. Y. B. Sc. 

(Computer Science) 

Laboratory Course I  & II 

WorkBook 

 
 
 
 
 
 
 
 
 
 
Name ______________________________________________________ 
 
College Name ______________________________________________ 
 
Roll No. ______________________ Division _____________________ 
 
Academic Year ____________



 2 

Written and Edited by 
 
 
 

Dr. Shailaja  C. Shirwaikar 

Prof. Poonam Ponde 

Prof. Reena Bharathi 

Prof.  Manisha Suryavanshi 

Prof. Jeevan Limaye 

Prof. Kalyani Ghanwat 

Prof.  Anagha Joshi 

Prof.  Vandana Babrekar 

Prof.  Manasi Keskar 

Prof.  Seema Purandare 

Prof.  Padmavathy M. 

Prof.  Anjali Sardesai 

Prof. Parag Tamhankar 

Prof. Rasika Rahalkar 



 3 

Foreword 
 
It gives me great pleasure to introduce this lab book for the F.Y.B.Sc (Computer Science) 
students. This being the first year of the course, a good foundation laid in this year will 
make it easier for students to grasp advanced concepts in the years to come. I congratulate 
the University of Pune and all faculty members who have taken the initiative and effort in 
bringing out this much needed book. 
 
The importance of laboratory courses in the subject of Computer Science cannot be 
emphasized enough. It is imperative that the theory, which students learn in the 
classroom, is supported by appropriate and in-depth hands-on experience in the 
laboratory. Moreover, it has to be conducted in a regular and systematic manner for 
complete understanding of the subject. I am sure that this lab book will satisfy this need.  
 
The laboratory assignments are designed in such a way that they consider the different 
learning pace of students and encourage original thinking. There is scope for variations in 
the questions posed thereby reducing the possibility of duplication of effort. The 
continuous assessment will prove beneficial not only to the students but also the 
institutions to gauge the performance of the student over the duration of the course. Most 
importantly, the collaborative wisdom of all the experts who have worked on this book 
will reach learners in the remotest locations.   
 
I understand that this is the first collaborative effort of its kind. I am sure that it will be 
very successful and set a precedent for similar efforts in other subjects as well. I wish it 
all success. 
 
 
Dr. Achyut  S. Godbole 
    



 4 

Table of contents 
 
Introduction ...................................... ................................................................................1 
Assignment Completion sheet...……………………………………………………… ……. 3 
Lab Course II 
Section I   
Exercise 1......................................... .................................................................................6 
Using basic DOS commands like date, time, dir, copy con, type, ren etc. 
Exercise 2......................................... ................................................................................11 
Creating the directory structure and Batch file in the DOS 
Exercise 3......................................... ................................................................................15 
Using Windows XP graphical user interface (GUI). 
Exercise 4......................................... ................................................................................21 
Using basic Linux commands  
Exercise 5......................................... ................................................................................28 
Using vi editor  
Exercise 6......................................... ................................................................................42 
Shell Programming (Writing simple shell scripts, use of conditional structures). 
Exercise 7......................................... ................................................................................46 
Shell programming (Writing  shell scripts using control structures ) 
Exercise 8......................................... ................................................................................49 
Creating simple HTML pages  
Exercise 9......................................... ................................................................................54 
HTML programming (use of lists, tables, frames, hyperlinks) 
Exercise 10........................................ ...............................................................................59 
HTML programming ( Creation of forms, small case study to create HTML pages using all 
the above learnt techniques). 
 
Section II   
Exercise 11........................................ .................................................................................64 
To create simple tables , with only the primary key constraint ( as a table level constraint 
& as a field level constraint) (include all data types) 
Exercise 12........................................ .................................................................................68 
To create more than one table, with referential integrity constraint, PK constraint. 
Exercise 13........................................ .................................................................................74 
To create  one or more tables with Check ,unique and not null constraint 
Exercise 14........................................ .................................................................................76 
To drop  a table from the database and to alter the schema of a table in the Database. 
Exercise 15........................................ .................................................................................78 
To insert / update / delete records using tables created in  previous  
Assignments. ( use simple forms of insert / update / delete statements) 
Exercise 16........................................ .................................................................................82 
To understand & get a Hands-on on Select  statement 
Exercise 17........................................ .................................................................................86 
To query table, using set operations (union, intersect) 
Exercise 18........................................ .................................................................................89 
To query tables using nested queries  
Exercise 19........................................ .................................................................................92 
To query tables , using nested queries ( use of ‘Except’, exists, not  exists  clauses) 
Exercise 20........................................ .................................................................................95 
Assignment related to small case studies ( Each case study will involve creating tables with 
specified constraints, inserting records to it & writing queries for extracting records from 
these tables) 



 5 

Lab course I 
Exercise 1......................................... ................................................................................100 
To demonstrate use of data types, simple operators (expressions) 
Exercise 2......................................... ................................................................................103 
To demonstrate decision making statements (if and if-else, nested structures) 
Exercise 3......................................... ................................................................................106 
To demonstrate decision making statements (switch case) 
Exercise 4......................................... ................................................................................111 
To demonstrate use of simple loops 
Exercise 5......................................... ................................................................................116 
To demonstrate use of nested loops  
Exercise 6......................................... ................................................................................119 
To demonstrate menu driven programs and use of standard library functions. 
Exercise 7......................................... ................................................................................122 
To demonstrate writing C programs in modular way ( use of user defined functions) 
Exercise 8......................................... ................................................................................125 
To demonstrate recursive functions. 
Exercise 9......................................... ................................................................................128 
To demonstrate use of arrays (1-d arrays ) and functions  
Exercise 10........................................ ...............................................................................132 
To demonstrate use of multidimensional array(2-d arrays ) and functions 
Exercise 11........................................ ..............................................................................136 
To demonstrate use of pointers 
Exercise 12........................................ ..............................................................................140 
To demonstrate concept of strings (strings and pointers) 
Exercise 13........................................ ..............................................................................144 
To demonstrate array of strings. 
Exercise 14........................................ ..............................................................................146 
To demonstrate use of bitwise operators. 
Exercise 15........................................ ..............................................................................149 
To demonstrate structures (using array and functions ) 
Exercise 16........................................ ..............................................................................152 
To demonstrate nested structures  and Unions 
Exercise 17........................................ ..............................................................................157 
To demonstrate command line arguments and preprocessor directives. 
Exercise 18........................................ ..............................................................................160 
To demonstrate file handling (text files) 
Exercise 19........................................ ..............................................................................164 
To demonstrate file handling (binary files and random access to files) 
Exercise 20........................................ ..............................................................................167 
Problem solving using C 
 
Appendix A- Guidelines for setting up the lab..........................................................172 
 
References                                                                                  180 
 
 

 
 
 
 
 
 
 



 6 

Introduction  
 
1. About the work book 
 
This workbook is intended to be used by F.Y.B.Sc (Computer Science) students for the two 
Computer Science laboratory courses in their curriculum. In Computer Science, hands-on 
laboratory experience is critical to the understanding of theoretical concepts studied in the theory 
courses. This workbook provides the requisite background material as well as numerous 
computing problems covering all difficulty levels.      
 
The objectives of this book are  

1) Defining clearly the scope of the course 
2) Bringing uniformity in the way the course is conducted across different colleges 
3) Continuous assessment of the course 
4) Bring in variation and variety in the experiments carried out by different students in a 

batch 
5) Providing ready reference for students while working in the lab 
6) Catering to the need of slow paced as well as fast paced learners 
 

2. How to use this workbook 
 
This workbook is mandatory for the completion of the laboratory course. It is a measure of the 
performance of the student in the laboratory for the entire duration of the course.  
 
2.1 Instructions to the students 
Please read the following instructions carefully and follow them 
 
1) You are expected to carry this book every time you come to the lab for computer science 
practicals 
2) A file should be maintained separately by each student which should contain the algorithms, 
flowcharts, written answers, source code as well as the program output. 
3) You should prepare yourself before hand for the Exercise by reading the material mentioned 

under icon . Also go through the material given in ready reference icon . 
4) If the self activity exercise or assessment work contains any blanks such as this ______, or  

  ,  get them filled by your instructor. 
5) Instructor will specify which problems you are to solve by ticking box �  
6) Follow good programming practices like: 

• Use appropriate file naming conventions 
• Use meaningful variable names 
• Use proper Indentation 
• Use comments in the program 
• Every program should contain in comments prgrammer’s name and date   

7) You will be assessed for each exercise on a scale of 5 
           i)  Not done             0 
           ii) Incomplete           1 
           iii) Late Complete     2 
           iv) Needs improvement    3 
           v) Complete             4 
           vi)  Well Done      5 
 
2.2. Instruction to the Instructors 
 
1) Explain the assignment and related concepts in around ten minutes using white board if 
required or by demonstrating the software 



 7 

2) Fill in the blanks with different values for each student 
3) Choose appropriate problems to be solved by student by ticking box �  
4) Make sure that students follow the instruction as given above 
5) After a student completes a specific set, the instructor has to verify the outputs and sign in the 
provided space after the activity. 
6) Ensure that students use good programming practices. 
7) You should evaluate each assignment carried out by a student on a scale of 5 as specified 
above by ticking appropriate box.  
8) The value should also be entered on assignment completion page of the respective Lab course 
 
2.3. Instructions to the Lab administrator 
 
You have to ensure that appropriate hardware and software is available to each student. The 
operating system and software requirements on server side and also client side are as given 
below 
1) Server Side ( Operating System ) 

a. * Fedora Core Linux 
* Microsoft Windows Server 2003 
b.   Servers Side (software’s to be installed) 
In Linux    – C, C++, awk, shell, perl, postgresql/Mysql 
In WinXP -- MSOffice  
  

2). Client Side ( Operating System ) 
a. * Red Hat Linux and Fedora Core 
* Microsoft Windows XP 
b.   Client Side ( software’s to be installed ) 
In Linux    – C, C++, awk, shell, perl, postgresql/mysql 
In WinXP -- MSOffice  

The detail information about installation and configuring of the server and client are provided in 
appendix A 

  
3. Acknowledgements 
 
The authors wish to express their gratitude to Dr. Narendra Jadhav, Vice Chancellor, University of 
Pune, for his vision and guidance in bringing out this lab book, a first of its kind. Dr. Pandit 
Vidyasagar, Director, Board of colleges and university department has played a pivotal role in 
taking this project to completion. We are indebted to Dr. V. B. Gaikwad, Dean Science Faculty, 
who extended his wholehearted support to this endeavor. Prof. Arun Gangarde, Chairperson, 
Board of studies in Computer Science deserves a special mention for his untiring efforts during 
the entire process.  
 
We appreciate the efforts taken by Prof. Chitra Nagarkar , member, Board of studies in Computer 
Science during initial phases of the project. We would like to acknowledge the role played by the 
University authorities and the members of the Board of Studies in Computer Science. 
 
Special thanks to Mr. Achyut Godbole, noted IT personality and renowned author who took a lot 
of interest in this project. 
 
Our heartfelt thanks to Dr. Sanjay Kadam, CDAC and Ms. Kishori Khadilkar, Patni Computer 
Systems Ltd., for painstakingly reviewing the entire book and giving valuable inputs. Last but not 
the least, we thank all the faculty members, who have been involved in this project and shared 
their expertise.  
  
 



 8 

Assignment Completion Sheet 
 
Lab Course I I 
Section I  
Sr. 
No 

Assignment Name  Grade 

1 Using basic DOS commands like date, time, dir, copy con , type, 
ren etc. 

 

2 Creating a directory structure in DOS  and batch files.  
3 Using Windows XP graphical user interface (GUI).  
4 Using basic Linux commands   
5 Using vi editor   
6 Shell Programming (Writing simple shell scripts, use of conditional 

structures). 
 

7 Shell programming (Writing  shell scripts using control structures )  
8 Creating simple HTML pages (use of different tags for changing 

fonts, foreground and background colors etc.)  
 

9 HTML programming (use of lists, tables, frames, hyperlinks)  
10 HTML programming ( Creation of forms, small case study to create 

HTML pages using all the above learnt techniques). 
 

 
Section II   
11 To create simple tables , with only the primary key constraint ( as a 

table level constraint & as a field level constraint) (include all data 
types) 

 

12 To create more than one table, with referential integrity constraint, 
PK constraint. 

 

13 To create  one or more tables with Check ,unique and not null 
constraint 
 

 

14 To drop  a table from the database and to alter the schema of a 
table in the Database 

 

15 To insert / update / delete records using tables created in  previous  
Assignments. ( use simple forms of insert / update / delete 
statements) 

 

16 To query the tables using simple form of select statement  
17 To query table, using set operations (union, intersect)  
18 To query tables using nested queries   
19 To query tables , using nested queries ( use of ‘Except’, exists, not   
20 Assignment related to small case studies ( Each case study will 

involve creating tables with specified constraints, inserting records 
to it & writing queries for extracting records from these tables) 

 

 



 9 

 
Lab Course I  
Sr. 
No 

Assignment Name  Grade 

1 To demonstrate use of data types, simple operators (expressions)  
2 To demonstrate decision making statements (if and if-else, nested 

structures) 
 

3 To demonstrate decision making statements (switch case)  
4 To demonstrate use of simple loops  
5 To demonstrate use of nested loops   
6 To demonstrate menu driven programs and use of standard library 

functions. 
 

7 To demonstrate writing C programs in modular way ( use of user 
defined functions) 

 

8 To demonstrate recursive functions.  
9 To demonstrate use of arrays (1-d arrays ) and functions   
10 To demonstrate use of multidimensional array(2-d arrays ) and 

functions 
 

11 To demonstrate use of pointers  
12 To demonstrate concept of strings(strings and pointers)  
13 To demonstrate array of strings.  
14 To demonstrate use of bitwise operators.  
15 To demonstrate structures (using array and functions )  
16 To demonstrate nested structures and Unions  
17 To demonstrate command line arguments and pre-processor 

directives. 
 

18 To demonstrate file handling (text files)  
19 To demonstrate file handling (binary files and random access to 

files) 
 

20 Problem solving using C  
 
 
 



 10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lab Course II 
Section I  



 11 

 
Exercise 1   Start Date  

    

      /      / 
 

 

 
Using basic DOS commands like date, time, dir, copy con , type, ren etc. 

 
You should read following topics before starting this exercise 
1. Read about DOS as an Operating System 
2. Command line interface, Internal and external command 
3. File and file naming convention. 

 
Operating system is an interface between the user and the computer hardware. MS-DOS 
(Microsoft’s Disk Operating System) runs on any of the Intel 8088,80x86 or Pentium class CPU’s 
on a Personal computer platform. The version of MS-DOS that runs on early IBM computers is 
called PC-DOS. 
 
DOS is a 16-bit, single tasking, single-user operating system. It operates in real mode , meaning 
that only one program or process can run at a time. There is a 640 KB limit on memory that is 
accessible to the applications. The applications, directly access and control the hardware like 
printers bypassing the operating system. DOS has a simple text-based command line interface 
and it comprises of three files – MSDOS.SYS, COMMAND.COM and IO.SYS. 
 
An operating system allows you to store and access information on a computer which can be 
letters, favourite music, family pictures, reports etc. Every piece of stored data accessed by the 
computer is treated as a file and is assigned a unique name. DOS uses a “8.3”  filename, which 
can be up to eight characters long  followed by a period and an extension of three characters. It 
cannot contain  characters such as  this   “ /  \ [ ] : ; = , . 
 
When the number of files stored on a disk attached to a computer increases, it need to be 
organized. The disks with large capacity are split into one or more partitions or drives. Each 
partition, drive or volume is given a name such as ‘C’ , ‘D’ etc. Files in a partition are organized 
into directories which are organized similar to tree structure.  
 

 
 
Every file has path starting from root through subdirectories reaching a file. Path of file paint.exe 
is c:\Programs\Accessories\paint.exe 
 
You can execute DOS command on Windows XP by getting the console with a DOS prompt by 
executing command program or choosing command prompt from Programs- Accessories. 

C:\ 

Accessories 

Programs Documents 

Notepad.exe 
Calculator.exe 

Paint.exe 

abc.txtc
et 

Myletter.txt 

trial 

Mypic.bmp 

office Acrobat 



 12 

In Windows XP, Select the following path : 
            Start ->  Programs -> Accessories -> Command Prompt 
It will display command prompt as C:\> _  , by default. The DOS commands can be typed at this 
prompt.  
 
1. Internal Commands 
 
Command Used for  Format & Example 
HELP Gives help on all DOS 

commands or a specific 
command 
 

C:\> help <commandname> 
C:\> help 
C:\> help cls 

CLS It clears the screen and the 
cursor waits in the top left 
corner of the screen with 
current working prompt. 

C:\> Cls 

VER Displays the current DOS 
version 

C:\> Ver 

DATE 
 

Used to display and change 
the system date. 
Displays the current date and 
prompt user to change the 
date if desired. 

C:\> DATE  [mm-dd-yy] 
C:\> Date 
 
 

TIME  
 

Used to display and change 
system time. 

C:\> TIME  [hh:mm:ss:xx] 
C:\> Time 

DIR  
 

List contents of the specified 
directory 

C:\> DIR  [drive :] [path] [filename] [.ext] [/option] 
Drive – specifies the drive name 
Path   - specifies the list of subdirectories to the 
required directory 
Filename – the name of the file 
Ext  -  specifies the extension of the file. 
Option – specifies one or more options to be 
used 
 /p   -  Page-wise listing 
 /w  -  Wide-format 
 /s    -  list the files of subdirectories below 
specified directory. 
/o   -  ordered listing (can be reversed by -) 
   D - chronological order 
   E - extension-wise, then by name 
   G - grouped by subdirectories 
   N – filename-wise, then extension 
   S – file size 
/a    -  attributewise listing (can be reversed by -) 
   D – Directories only 
   R -  Read-only files 
H – Hidden files 
   A – Archive files 
   S – System files 

C:\> dir 
C:\> dir  *.exe 
C:\>  N??.exe 

Here *  and ? are wild-card characters . A wild-
card character * can be replaced by any letter or 
letters while ? can be replaced by any single 
letter , before executing the command  
      C:\> dir a*.* 

C:\> dir c:\d2\d21 /p 
C:\> dir /A:h 

       C:\> dir  /o:s  /A:R 



 13 

COPY  
 

Used to copy or append files 
to other files. 

C:\> copy <source> <destination>       
C:\> copy con a.txt 
Copies the contents typed at the console to file 
a.txt. Input has to be terminated by Ctrl+Z. 
C:\> copy a.txt b.txt 
C:\> copy a.txt + b.txt c.txt 
Copies the appended file of a.txt and b.txt to c.txt 
C:\> Copy c:\d2\d21\c.doc d: 
Copies files c.doc to floppy in drive d by the 
same name 

DEL Used to delete a file C:\> Del filename 
C:\> Del a.txt 

TYPE Display the contents of the 
file on the screen or it can be 
sent to the printer . 
 

C:\> Type  <filename> 
C:\> type  a.txt 
C:\> type a.txt |  more 
C:\> type a.txt > prn 

RENAME 
or REN  
 

Changes name of an existing 
file. 

C:\> ren <old_filename><new_filename> 
C:\> ren a.txt b.txt 
 

PATH Used to display the current 
path or set a new search path 
for the executable files. 

PATH [[drive:] path ][;[drive:] path …]] 
C:\> Path 
Displays the current search path as 
PATH C:\DOS; C:\system32;  D:\PROGRAMS 
Any executable program will be first searched in 
DOS, then system32 and then PROGRAMS 
directory 
 

External Commands 
 
ATTRIB Used to change or display 

various file attributes. 
 

ATTRIB properties filename +  sets 
- removes the set attributes 
 Properties R : Read only 
         A : Archive 
       S : System file 
C:\> ATTRIB +R a.txt   
     Makes the file a.txt Read-only 
C:\>  ATTRIB +H C:\D2\D21\a.txt  
     Makes file a.txt hidden file     

FORMAT used to format a disk into 
sectors and create a File 
Allocation Table  (FAT) which 
records all files on the disk. 
Previous disk contents are 
destroyed. 
 

FORMAT [drive:] [/switches] 
Switches  
/I Formats double sided disk as a 
single sided disk 
/B leaves room for system files but 
system files are not copied 
/Q Quick formatting 
/S Transfer DOS system files to the 
formatted disk 
/U  Prompts the user to add a volume 
label to the disk 
 

CHKDSK Used to check the disk for 
errors and displays a status 
report. 
 

CHKDSK filename option 
Option 
 /F     Automatic correction of errors 
 /V     Displays a series of messages 
indicating the progress 
C:\> CHKDSK a: 

DOSKEY Used to recall previous 
commands using up and down 
arrow keys 

 

 



 14 

 
Type the following commands and explain what the command is used for and give the output of 
the command 
Sr. No Command  Explanation Output 
�  1 copy con my.txt   
�  2 copy my.txt ab.txt   
�  3 dir *.txt   
�  4 ren *.txt *.bak   
�  5 dir   
�  6 attrib +h ab.bak   
�  7 dir *.bak   
�  8 ver   
�  9 type my.bak   
�  10 path   
�  11 cls   
�  12 help dir   
�  13 dir /A:h   
�  14 help attrib   
�  15 del my.bak   
 

Signature of the instructor   
 

Date  
 

/       /           

 

 
  

Set A 
Give the DOS commands to be used to perform following set of tasks 
 �  1. 
     
Sr. No Task Command 
1 Create  a file named a.txt containing your 

name and address 
 

2 Change the name of the above file as 
self.txt 

 

3 Create a copy of the above file as bio.txt  
4 Display the contents of the file self.txt  
5 Change the file attribute to hidden  
 
�  2. 
Sr. No Task Command 
1 Create  a file named a.txt containing the 

college details 
 

2 Change the name of the above file to 
college.txt  

 

3 Create a copy of the file by name 
course.txt 

 

4 Display the contents of the file course.txt  
5 Change the file attribute to read only  
 
�  3. 
Sr. No Task Command 
1 Display the files which have the extension 

txt 
 

2 Rename the extension from txt to doc  
3 Remove all the files created starting with  



 15 

the name 1 
4 Chkdsk any of the drives with display and 

correction options 
 

5 Set a new search path  
 
 �   4.  
Sr. No Task Command 
1 Create  a file named a.txt containing 

names of five students 
 

2 Change the name of the file to b.txt  
3 Create a copy of the file by name copy.txt  
4 Display the contents of the file copy.txt  
5 Change the file attribute to hidden  
6 Display the current path  
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set B 
�  1. By pressing the arrow keys, the commands those have been used can be used again. How is 
it really being done? 
�  2. Create a file, change it into Read only file. Create one more file with the same name. Are 
both the files existing  or any one is only existing? Why? 
�  3. Display the file content pagewise if it goes more than the page. 
�  4. Set the date to 02-30-09. Does the system accept the date? Why? 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 

Assignment Evaluation                                    Signature  
 

0: Not done             2: Late Complete      4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  
 



 16 

 
Exercise 2   Start Date  

    

      /      / 
 

 

 
Creating the directory structure and Batch file in the DOS 

 
You should read following topics before starting this exercise 
1. Complete the previous exercise 
2. The concepts of Directories and Batch Files 

 
Directory system is used for organizing the files. The directory is a group of files stored together 
and identified by a name. The directories are organized in a hierarchical structure i.e. a directory 
can contain subdirectories which in turn can contain files and / or  more directories. 
 
A batch file is a simple text file with an extension .BAT. It contains a set of DOS commands when 
the name of batch file is typed at the DOS prompt, all  the DOS commands within the file are 
executed one by one 
 
We will study the dos commands for creating and maintaining directory structure 
 
Command  Used for  Format and Example  
MKDIR or MD It creates a new directory – 

make directory 
MD [drive:][path]<directory name> 
 
C:\> md newdir 
C:\> mkdir c:\>onedir 
C:\> md c:\onedir\twodir 

CHDIR or CD Changes the current 
directory to the specified 
directory 
 

CD [drive] [path] <directory name> 
 
C:\> cd c:\onedir 
C:\> cd ..   – changes to the parent 
directory 

RMDIR or RD It is used to remove an 
empty directory i.e. all the 
files are already deleted in 
that directory. 

RD [drive:] [path] <directory> 
C:> rd newdir 

 
Batch file commands 
 
Command Used for  Format & Example 
@    Does not display command 

on screen     
@ date 

ECHO  
 

Used to suppress or display 
commands in the batch file 
on the screen 

Echo on 
Echo off 
Echo hello 

REM  
 

Used to add comments in a 
batch file 

REM changing the directory 

PAUSE Used to suspend batch file 
processing and waits for 
user to press any key 
before resuming execution. 

Pause [remark] 
Pause changing the directory 
 

GOTO Redirects batch processing 
to the command following 
the specified label. 

GOTO label 
GOTO end 
The label is written as :label 



 17 

IF Checking conditions before 
executing a command 
 

If [NOT] string==string2 command 
If [NOT] exist file command 
If [Not] errorlevel number command. 

SHIFT  
  

All parameters are shifted 
one position to the left. 

 

AUTOEXEC.BAT (automatic execution batch file) is a special batch file, found in the root directory 
of the boot disk. This file will automatically run before control of the computer gets turned over to 
the user. 

DOS had an AUTOEXEC.BAT that looked like this: 

@Echo OFF 
Path C:\DOS;C:\;C:\BAT;C:\UTILITY; 
Prompt $p$g 
Set TEMP=C:\Temp 
C:\Utility\NumLock - 
CD\ 
CLS 

This file sets the PATH, defines a prompt and a temporary directory, runs a utility program, 
changes to the root directory and then clears the screen. 

 
Type in the following set of commands to create a batch file named mydir.bat 
 
copy con mydir.bat 
 echo *** Batch file for creating directories **** 
 pause 
 mkdir fy sy ty 
 chdir fy 
@echo off 
 mkdir morning evening 
 cd ..\ty 
 mkdir batch1 batch2 
 cd .. 
 ^Z 

 
Execute the batch file mydir.bat by typing mydir at the prompt. Use dir and cd command to view 
the directory structure created  
 
Signature of the instructor   

 
Date  

 

/       /           

 



 18 

 

 
Set A 
 
�  1. Create the following Directory Structure in the current directory containing directories and file 

and also remove it.  Write down the commands used for the exercise 
 
 
 
 
 
 
 
 
 
 
 
 
Where         is a directory and       is a file.  
Instructor should fill in the blanks with appropriate values. 
 
�  2. Create the following Directory Structure in the current directory and also remove it. Write 

down the commands used for the exercise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Where         is a directory and       is a file.  
Instructor should fill in the blanks with appropriate values. 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 
Set B 
 
Create batch files to perform the following tasks 
�  1. Accepts two filenames as parameters. 

(i) If the first file exists, then: Display its contents. 
If second exists, then copy contents of first to second. 
otherwise rename first to second. 

       (iii)       If first does not exist, then: Create it. 
        If second does not exist, copy contents of first to second 
       otherwise delete second file 
 
 
 
 
 



 19 

�  2. Create the following directory structure by passing dummy parameter to batch file. 

 
 
 
 
 
 
 
 
 
Instructor should fill in the blanks with appropriate values. 
 
�  3. Create a BACKUP directory with two directories TXT and BAT. Copy all batch files with .bat 

extension to BAT directory, all files with .txt extension to TXT directory. Delete all files with 
.bat extension. Give appropriate message and pause before deleting the file.  

 
Signature of the instructor   

 
Date  

 

/       /           

Set C 
 
�  1. Create a new directory with a new.txt file in it. Change the attrib to hidden. Now use the dir     

command to view the contents of the file. What are the contents you see? Why? Can you use 
a different command to get the actual directory contents? 

 

 
Signature of the instructor   

 
Date  

 

/       /           

 
 

Assignment Evaluation                                    Signature  
 

0: Not done             2: Late Complete      4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 20 

 
Exercise 3   Start Date  

    

      /      / 
 

 

 
Using Windows XP graphical user interface (GUI) and Windows explorer. 

 
You should read following topics before starting this exercise 
1. Windows XP Operating System Introduction 
2. Main keywords associated with Microsoft Windows XP 
3. Know the various features of the Graphical user Interface. 
4. Know the Windows explorer. 

 
Microsoft has been making OS software utilizing graphical user interfaces since around 1985. 
Some of the earlier windows versions were Windows 3.1 (1990), Windows 95 (1995), Windows 
98 (1998), Windows ME (2000), Windows 2000 (2000), and Windows XP (2001). Windows XP 
comes in two bundles Windows XP Professional and Windows XP for home users. Windows 2000 
and Windows XP are personal operating systems when used as stand alone machines but can be 
considered network operating systems when connected to a network.  An operating system is a 
collection of programs, which enables the entire pc to work. Some of the tasks that are performed 
by Windows are: 

1. Assisting in starting and shutting down of a pc. 
2. Controlling and handling the hardware, including RAM, I/O cards etc. 
3. Providing a graphics user interface including various features.  
4. Provides a platform for applications to execute like Word. 
5. File Handling. 
6. Provides an interface for various tools like Internet explorer. 

 
Main Keywords Associated With Microsoft Windows XP  
 

Name Picture & Description 
Drives  

 

 

 
 
Drives are devices used to store data. Most computers have at least two drives: 
hard drive C:\ (Which is the main storage and a floppy drive or a CD drive 
(which stores smaller volumes of data) The hard drive is typically designated as 
C:\ drive and the floppy drive is typically designated as A:\ drive. You will also 
have other drives typically labelled D:\ or F:\ or H:\ or G:\  

Folders / 
Directory 

 

 
 
Folders are used to organize the data stored on your drives. A Directory is the 
path given to a folder on a drive. For example a text file called Hello World is 
located in the My Documents directory on the C:\ drive. It would therefore read 
"C:\My Documents\Hello World.txt"  

File 
Extensions  

File Extensions are the ending letters associated with a file and an application 
that it can be manipulated in. This way Windows knows to tell which program to 
open the file you want to manipulate. For example a text file has an extension 



 21 

 of .txt, so a text file created in Notepad called Hello World would look like - 
Hello World.txt . You do not have to assign a file extension to a file that you 
create. The program you use will automatically do this for you. All you need to 
do is give it a filename. Some other common extensions are as follows:  

• .doc = Microsoft Word Document  
• .xls = Microsoft Excel Document 
• .ppt = Microsoft PowerPoint Presentation 
• .mdb = Microsoft Access Database 
• .bmp = Windows Bitmap Picture 
• .wav = Sound File 
• .html or .htm = Internet Document   

   Icon 

 

An Icon is a graphic image. Icons help you to execute the application programs 
quickly. Commands tell the computer what you want the computer to do. To 
execute the application program by using an icon, double-click on the icon. 

Desktop 

 
 
After starting your computer, the desktop is the first thing that you see with 
some background image displayed on the screen with icons for various 
programs. The desktop is the area you work in. 

Taskbar  
The taskbar is usually located on the bottom of the desktop. The Start button, 
active program buttons, and the system tray are located on the Taskbar 
 

Start Menu 

   
 
Start menu    Classic start menu 
 
Start menu guides you how to start with the various application programs that 
are available on your windows system. 
 



 22 

We can choose the view of start menu by right clicking on the start 
button � properties � start menu.  
 

System 
Tray  

The System Tray is usually located in the lower right hand corner of the 
Windows Desktop. The system tray contains a display of the current computer 
time, and the icons representing the programs activated when Windows first 
starts up. These are the background running applications required for smooth 
running of windows. 

My 
Computer 

 
My Computer icon provides access to the different parts of your computer. You 
can access the different drives (Hard Drive, Floppy Drive, and Network Drives) 
inside My Computer. 

Recycle 
Bin 

 
When you delete an object, just by pressing Del key, Windows XP sends it to 
the Recycle Bin. You can restore objects that are located in the Recycle Bin or 
you can permanently delete them by right clicking on the Recycle Bin and 
select Empty Recycle Bin . 
 

My 
Documents 

 
The My Documents folder is nothing more than a regular folder that resides on 
your Windows Desktop. However, it offers an easy-to-reach location where you 
can store and retrieve important data, and the icon is always available in 
Windows explorer and on the desktop. You can double-click My Documents 
icon, click the File menu, point to New and click Folder to create folders. This is 
the default destination folder offered by windows system where the entire user 
created documents gets stored. 
 

Internet 
Explorer 

 
The Internet Explorer icon launches the Internet Explorer browser. The Internet 
Explorer browser is what you will use to access the Internet and the World 
Wide Web. 
 

Window 

 



 23 

 
Every application when executed opens a window. 

Window 
Title Bar 

 
 
Title bar shows the name of the Application we are in. 

Menu Bar  
 
The menu bar  contains the menus that will allow us access to all the 
operations that can be done with a file or folder 

Standard 
Bar 
 
Tool Bar 

 
 

 
 
Optional.This bar includes the most commonly used buttons 

Minimize, 
Maximize, 
Restore, 
Close 

 
These are the series of buttons which are present on the top right hand 
corner of every window. 

 
Windows Explorer 
 
Windows Explorer is the basic shell or user interface or an indispensable tool in the operating 
system, with the help of which we can organize and control the files and folders of the different 
storage systems at our disposal such as the hard drive, disk drive, etc. Its properties and 
characteristics are something we deal with every time we use the computer. The Windows 
Explorer is also known as the File Manager. Through it we can delete, view, copy, or move files 
and folders. 
 
Exploring the explorer  
 
Name Picture and description  
Starting the 
windows 
explorer 

 
 
The fastest way to get to the explorer is by pressing key combination windows 
key + e using the modern keyboards or by right clicking the start  button and 
selecting the explore  menu option as shown above 
 
The other would be click start -> programs -> accessories -> windows 
explorer 



 24 

Components 
of the 
explorer 

 
 
The explorer consists of two sections. On the left side there is the directory 
tree, which is the list of units and folders in the system. Only units and folders 
appear and no files. On the right side there is another section, which will show 
the contents of the folder that we have selected in the left section. Depending 
on the type of view that we have activated, we will see different type of 
information regarding the files. In detailed view, we see the name, size, type, 
and date of last modification for each file. The windows explorer view can be 
customized according to each user. There is a View menu option available, 
with the help of which each user can select his/her own way of displaying files 
and folders 

 

 
�  1. Click on Start button. Select Search -> For Files And Folders. Search for the file 
________________________ and write down the entire path of the file  
 
�  2. Click on Start -> Run.  Browse to the _______ application in _____ folder and execute the 
application 
�  3. Right click on the desktop and list down the menu items.  
�  4. Right click the My documents  folder and view its properties 
�  5. Create folder for you in the My documents  folder. Right click the folder and view its 
properties and write down its path and size 
�  6. Click on Start button. Click control panel and write any three parts 
�  7. Right click on the desktop. Select New -> Shortcut and browse to create a new shortcut for 
______ application. 
�  8. Use All programs in start menu, point to accessories and write down the options available in 
system tools (If you are in classic start menu change it to start menu before executing this 
command). 
�  9. Right click on the taskbar and list down different menu items. 
�  10. Open the explorer as directed above and list down all the menu items on the menu bar. 
�  11. Click on the view  menu option and list out the different appearances of thumbnails, tiles, 
icons, list, and details options. 
�  12. Select the ___________ folder and write down the information given in the status bar. 
(Note: If the status bar is not to be seen you would need to make it available by selecting View 
option). 
�  13. Double click the computer  icon on the desktop. Check which window is opened. Is it similar 
to the windows explorer? What is the difference between the two? 

 
Instructor should fill in the blanks with appropriate values. 

 
Signature of the instructor   

 
Date  

 

/       /           

 

 
Set A 



 25 

�  1. Use Notepad option available in accessories to create a file and save it in the folder created 
by you 
�  2. Use Paint option available in accessories to create an image and save it in the folder created 
by you 
�  3. Use Disk Defragmenter tool from system tools 
�  4. Use control panel to change the screen saver . 
�  5. Right click the task bar and select the Task Manager option. Name the applications that are 
currently running. 
�  6. Double click on the time located at the bottom right corner on the system tray. Set the time 
zone to __________. How much is the time difference between ___________ and Indian time 
zone? 
�  7. What happens when you select the Run Desktop cleanup wizard  by right clicking the 
desktop and selecting the arrange icons  by option?  
 
Instructor should fill in the blanks with appropriate values. 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set B 
 
�  1. Create a new word document in the selected folder through the File menu option. 
�  2. By right clicking the newly created file list out the properties . 
�  ⁭ 3. Right click the newly created file. Select the ________ option (e.g. cut, copy, send to etc.) 
and perform the specified operation and observe the results. 
�  4. Click MyComputer  on the left hand side panel. Right click on any drive and select sharing 
and security  option. Select the sharing  tab and do the ______________settings. 
�  5. Share the folder created by you by right-clicking on the folder. Use control panel -> 
administrative tools to see the shared folders. In which option of the administrative tools can you 
see the shared folders. 
�  6. Customize the entire explorer by selecting / deselecting various toolbars from view ���� 
toolbars . 
 
Instructor should fill in the blanks with appropriate values. 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 26 

 
Exercise 4   Start Date  

    

      /      / 
 

 

 
Using basic Linux commands  

 
You should read following topics before starting this exercise 
1. UNIX and LINUX operating system 
2. cat with options, ls with options, mkdir,cd, rmdir, cp, mv, cal, pwd, wc, grep with options, I/O 
redirection using >,>>,<,| etc. 
 

 
About UNIX and LINUX 
The success story of UNIX starts with the failure of the MULTICS project. The project failed and 
the powerful GE-645 machine was withdrawn by GE. Two scientists at Bell Labs, Ken Thompson 
and Dennis Ritchie, who were part of the MULTICS team, continued to work and succeeded and 
named their Operating system UNIX, a pun on MULTICS. 
The machine available at Bell Labs was a DEC PDP-7  with only 64 k memory while the 
Operating system they were developing was meant for a larger machine. The problematic 
situation was handled with an innovative solution. They developed most part of the software in a 
higher level language, C, which helped them in porting their Operating system from one hardware 
to another.   
With the growing popularity of UNIX, it was available on a variety of machines, from personal 
computers to mainframes. The most popular amongst them was UNIX System V from AT&T. 
Each big player in the market came up with their own versions of UNIX.  IBM had its own version 
of UNIX called AIX, which was used on high-end servers. Sun’s version of UNIX called Solaris 
was used on Sun workstations. Novell marketed UnixWare along with Netware, its Network 
operating system. 
LINUX is a version of UNIX , which though it resembles UNIX in looks and feels but differs from 
other versions in the way it was developed and distributed. In contrast to large proprietary UNIX 
versions, Linux  was developed by Linus  Torvalds, a Finnish student. He made the source code 
available and invited partners via the internet in his development effort.  He got professional help 
from all quarters and Linux evolved rapidly. It was made freely available for everyone to use. 
Linux that was initially meant for Personal computers is now available for a variety of hardware 
platforms, from mainframes to handheld computers 
Linux supports multiple users. Every user need to have an account in order to use the system. 
One of the users called system administrator (root) is given the charge of creating user accounts 
and managing the system normally works on the “#” prompt. 

You will be given a username and password, using which you can login into Linux operating 
system. For computer users, the operating system provides a user-command  interface that is 
easy to use, usually called the Shell. The user can type commands at the shell prompt and get 
the services of the operating system. Linux operating system shell has the “$” prompt. 

You can open a system terminal that gives you a $ prompt where you can type in various shell 
commands. 

LINUX system will usually offer a variety of shell types: 

• sh or Bourne Shell: the original shell still used on UNIX systems and in UNIX-related 
environments. It is available on every Linux system for compatibility with UNIX programs. 

• bash or Bourne Again shell: the standard GNU shell, is the standard shell for common users 
on Linux and is a superset of the Bourne shell. 

• csh or C shell: the syntax of this shell resembles that of the C programming language. 

• tcsh or Turbo C shell: a superset of the common C shell, enhancing user-friendliness and 
speed. 



 27 

• ksh or the Korn shell: A superset of the Bourne shell 
All LINUX commands are case sensitive single words optionally having arguments. One of the 
argument is options which starts with “–“ sign immediately followed by one or more characters 
indicating option. The wild-cards or metacharacters “*” and “?” have similar meaning as in 
DOS.The “*”  character matches any number of characters while”?” matches a single character. 
The backquote “ ` ” is another metacharacter. Shell executes the command enclosed in 
backquote in its place.  Any wild-card is escaped with a \ character to be treated as it is  

 

Shell Variables 
There are number of predefined shell variables called system or environment variables which are 
set by the system when the system boots up.  Some important system variables are 

PATH It contains set of paths where the system searches for 
an executable file 

HOME It is the home or login directory where the user is placed 
initially 

PS1 It is the primary shell prompt which is usually $ 

PS2 It is the secondary shell prompt which is usually > 

 

Linux Files and directories 
Linux defines three main types of files. Linux treats all devices also as files.  
Ordinary or regular file A file containing data or program 
Directory file A file containing the list of filenames and their unique 

identifiers 
Special or device file  A file assigned to a device attached to a system 
 
Linux files may or may not have extensions. A file can have any number of dots in its name. Linux 
file names are case sensitive. The root directory represented by / is the topmost directory file 
containing number of subdirectories which in turn contains subdirectories and files  
 
Shell Commands 
The following is the list of shell commands 

Command  Used for Example 

date Displays both date and time 

The command can be used by the 
system administrator to change date 
and time. 

$date 

Format specifiers can be used as 
arguments 

%m month in integer format 

%h  Name of the month 

%d Day of the month 

%y  Last two digits of the year 

%H  hours 

%M  Minutes 

%S   Seconds 

$date  +%H 

$date +”%h  %m” 

cal Displays the calendar $cal  8 2007 

Displays the calendar for the month 
august of year 2007 

$cal  aug 

Displays the calendar for the month 
august of current year 



 28 

cat Displays the contents of the files used 
with the command 

$cat 

Displays immediately what is typed 
when you hit enter key 

$ cat > abc.txt 

Whatever number of lines typed till 
you press ^D are placed in abc.txt file 

$cat abc.txt 

Displays contents of file abc.txt 

ls Displays the contents of current 
directory. A single dot ( . ) stands for the 
current directory while a double dot( .. ) 
indicates the parent directory 

$ls 

lists all files in the current directory 

$ls –a 

Lists also the hidden files 

$ls –l  

Lists the permission information 
along with other information such as 
date of last modification, size in 
blocks etc. The first column of the 
output exhibits the file type and 
permissions. 

File type: -, d, b respectively for 
ordinary, directory and block device 
file. 

Permissions are of the form r, w, x, -  
i.e. read, write, execute and none 
respectively. 

There are three groups of rwx. 
Owner, group and public. 

mkdir Creates specified directory in the 
current directory, fails if a file or 
directory by that name is already 
present or user is not having 
permissions to create a directory 

$mkdir bin 

Creates bin directory  

$mkdir dir1 dir2 dir3 

Creates three directories dir1, dir2 
and dir3 

cd Switches to specified directory, fails if 
user is not having permissions to 
access the directory 

$cd /  

Switches to root directory 

$cd 

Changes to HOME directory 

rmdir Removes specified directory fails if the 
directory is not empty 

$rmdir dir1 

Removes dir1 directory 

$rmdir dir2 dir3 

Removes dir2 and dir3 directories 

cp Creates an exact copy of a file with a 
different name 

$cp abc.txt xyz.txt 

Copies abc.txt into a new file named 
xyz.txt 

$cp abc.txt  bin 

Copies abc.txt into a new file with the 
same name in bin directory 

mv It renames a file or moves a group of 
files to a different directory 

$mv  xyz.txt  pqr 

rm Deletes specified file. It can be used $rm  pqr 



 29 

with wildcards * and ? as in DOS, to 
delete all files of a specified type 

 

pwd Displays the path of your present 
working directory  

$pwd 

displays the directory in which you 
are currently working 

wc Counts words, lines and characters or 
bytes 

$wc –c abc.txt 

Displays the number of bytes in the 
file abc.txt 

$wc –l abc.txt 

Displays the number of lines in the 
file abc.txt 

$wc –w abc.txt 

Displays the number of words in the 
file abc.txt 

$wc abc.txt 

Displays the number of bytes, words 
and lines in the file abc.txt 

grep The syntax is 

grep options pattern filename 

It displays the lines in the file in which 
the pattern is found 

$grep Agarwal names.txt 

Displays lines in the names.txt where 
the string “Agarwal” is present 

$grep –n Agarwal names.txt 

Displays lines along with line 
numbers in the names.txt where the 
string “Agarwal” is present 

 

man Offers help on the shell command $man ls 

Shows entire manual page of Linux 
manual pertaining to ls command 

passwd It is used to change the password $passwd 

When invoked by an ordinary user 
asks for the old password and then 
demands typing and retyping of new 
password 

#passwd user1 

Used by administrator to change the 
passwd of user1 

echo Displays its arguments compressing the 
spaces. To preserve the spaces the 
words should be placed within quotes 

$echo $HOME 

$echo $PATH 

$echo eats     up   the   spaces 

$echo The date to-day is `date` 

$echo You can multiply using \*  

who Displays list of users currently looged in $who 

tail Displays last lines of the file $tail -3 abc.txt 

Displays last three lines of file abc.txt 

head Displays top lines of the file $head -5 abc.txt 

Displays top five lines of file abc.txt 

 
 



 30 

Redirection and pipes 
The most of the above commands take some input, do some processing and give the output or 
give error message in case there is some error. For example the cat command is usually given as 
$cat filename. Here cat command takes input from file named filename and gives output on the 
console. If the file is not present then it gives appropriate error message. By default the cat 
command writes the output or error message to the console. If we just type cat command without 
any filename, it will wait for user to type characters that means, it by default is expecting input 
also from console. The default files where a command reads its input, sends its output and error 
messages are called standard input(stdin), standard output(stdout) and standard error(stderr) 
respectively.  
 
By default all the above three files are attached with the terminal on which the command is 
executing. Therefore, every command, by default, takes its input from the keyboard and sends its 
output and error messages to the display screen.  Redirection is used to detach default file from 
the command and attach some specific file. Pipes allow you to send output of one command as 
input to the other command. The commands that are connected via a pipe are called filters 
 
Command  Symbol  Description  Format & Examples  
Input Redirection 
 

< It detaches the keyboard from 
the standard input of 
command and attaches 
specific  file  

$cat < abc.txt 
Takes its input from abc.txt 
and the output by default is 
on console. The effect is 
same as $cat tempfile 
 

Output Redirection 
 

> It detaches the console from 
the standard output of 
command and attaches 
specific  file  

$cat > file1 
Takes its input from 
keyboard by default and 
writes the output to file1, 
effectively whatever typed 
at the keyboard goes into 
tempfile 
$cat  file1 abc.txt > file2 
The contents of file1 and 
abc.txt will be 
concatenated and send to 
file2 
$cat file1 > /dev/lp0 
The contents of file file1 
will be sent to printer 
instead of console 

Output Redirection 
without overwriting 

>> In output redirection the file is 
cleared before writing to it. 
The >> is used so that output 
is appended and not 
overwritten  

$cat file1 > file1 
The file1 contents will be 
cleared 
$cat file2 >> file2 
The file2 will have its 
contents appended to it 

Pipe | The pipe character | is used 
between two commands so 
that output of first command 
is send as input to the second 
command 

$ ls –l | grep  “abc” 
 Displays the line in the 
output of ls –l containing 
pattern abc 

 

 
Execute all the commands given in the example column of all the tables  above in the same order 
and understand the usage of the commands 
 

Signature of the instructor   
 

Date  
 

/       /           



 31 

 
Set A 
�  1 Using cat command, create a file named ‘names.txt’ containing at least ten names and 
addresses of your friends ( firstname , surname, street name, cityname ). Type the following 
commands and explain what the command is used for and give the output of the command 
 
Command  Explanation  Output  
wc –lw names.txt   
mkdir ass1 ass2   
cp names.txt ass2   
cp names.txt list   
tail -3 list   
rmdir ass2   
cd ass2   
rm names.txt   
cd   
pwd   
ls  -l   
mv list list.txt   
grep  ___  names.txt   
 
�  2 Using cat command create a file named college.txt containing at least ten names and location 
of colleges ( collegename,  place , pincode ). Type the following commands and explain what the 
command is used for and give the output of the command 
 
Command  Explanation  Output  
mkdir  s1 s2 s3 s4   
cp college.txt  coll   
cp college.txt coll s1   
head -5 coll   
grep  -n  _____ college.txt   
rmdir s3 s4   
cd s1   
rm  coll   
pwd   
cd   
mv coll xy.txt   
rm *.txt   
ls –a   
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set B 
Give the commands to perform the following actions and give the output  
�  1 List  the last three lines of the file ______ 
�  2 Create a file named ______containing abc.txt appended to itself 
�  3 Display the current month(string)  and year 
�  4 Display the home directory followed by path  
�  5 Write the contents of directory to a file  
�  6 Append at the end of a file no of lines and the name of the file 
�  7 Create a file named Manualcp containing manual for cp command 
 

Signature of the instructor   
 

Date  
 

/       /           

 



 32 

 Set C 
 
Give the commands to perform the following actions and verify by executing the command  
�  1 Display the number of lines containg pattern “___ “ in first five lines of the file _____ 
�  2 Display the calendar of current month 
�  3 Store the number of users logged-in in a file _____ 
�  4 Create a file containing first three and last three lines of a file. 
�  5 Create a file containing word count of each and every file in the current directory plus a total 
at the end. 
�  6  Create a single file containing the data from all .txt files in the current directory.  
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 33 

 
Exercise 5   Start Date  

    

      /      / 
 

 

 
Using vi editor 

 
You should read following topics before starting this exercise 
1. Three modes in which vi editor works  
2. Commands in vi input mode for inserting, replacing, saving and quitting. 
3. Commands in vi for deleting, paging and scrolling, 
4. Undoing last editing instructions, search and replace 

 
Editor vi was developed by the University of California at Berkeley and is also supplied with the 
Berkeley distribution of the UNIX system. We are dividing the discussion into three parts – 
Introduction to vi, useful commands of vi and advanced and miscellaneous vi commands. We will 
first look at the table exhibiting the summary of vi Commands and then we will see the detailing of 
the vi commands. 
 
Sr. 
No. 

Command Meaning Sr. 
No. 

Command Meaning 

Using vi command  Delete and change  
*1. vi file Edit file *16 dd Delete line 
*2. vi –r file Recover file from 

crash 
*17 cc Change line 

Basic Cursor motions  18 D Delete from cursor to 
EOL 

*3.  h j k l �,↓, ↑, �, 19 C Change from cursor to 
EOL 

4. CR Down line to first non-
blank 

*20 x Delete character 

5. 0 (Zero) Beginning of line *21 s Change character 
6. $ End of line (EOL) 22 S Change line 
Screen Control  *23 rchr Replace current chr 

with chr 
7. ^U   ^D Up or Down half page 24 R Overprint change 
8. ^B   ^F UP or Down whole 

page 
Word Commands  

9. ^L Reprint page *25. w Next word 
Character input modes  *26. b Back word 
*10. a Append after cursor *27. e End of word 
11. A Append at end of line *28. dw Delete word 
*12. i Insert before cursor *29. cw Change word 
13. I Insert before first 

non-blank 
Generic commands  
object is any cursor motion: w for word; b 
back word; h,j,k,l for left, down, up, right; 
/string for up to string etc. 

*14. o Add lines after 
current line 

*30. dobject  Delete object 

15. O Add lines before 
current line 

*31. cobject Change object 

Search  Control Commands  
32. /string/ Search for string *42. :w Write file 
33. ?string? Reverse search for *43. :wq Write file and quit 



 34 

string 
*34 n Repeat last / or ? *44. :q Quit 
*35 N Reverse of n *45. :q! Quit (override check) 
Miscellaneous  *46. :ed-cmd Run the ed command 

ed-cmd 
*36. u Undo previous 

command 
*47. :num Go to line num 

37. U Restore entire line 48. ZZ Same as :wq 
*38. Yobject Save object in temp 

buffer 
   

39. Y Save line(s) in temp 
buffer 

   

*40. p Put saved buffer after 
cursor 

   

41. P Put saved buffer 
before cursor 

   

 
* Indicates all the characters of the command are in lower case. 

 
Entering into vi 
You can run the vi command just as normal Unix/Linux command. As a result you will get the 
screen, printing about the file name, number of lines and number of characters at the bottom of 
your screen. 
$ vi names ↵ where (↵) is an enter key throughout this documentation. 
 

 

 

 

 

 

 

 

 

 

 

The cursor is shown as _ and is placed in the upper left corner when vi starts. A ~ in the first 
column indicates the file doesn’t have enough lines to fill up the screen. The bottom line is the 
message line.  

The vi editor uses two types of mode to deal with the file operations: insert mode and command 
mode. 

The vi editor allows getting into insert mode by pressing a respective characters cause to enter 
into insert mode. It also allows getting into command mode by pressing ESC key or “:” character 
sequence. The ESC key is to come out from the current activity and “:” character behaves like a 
prompt where you execute the commands of vi editor. We are discussing vi editor command in 
the control command section and into other few sections.  

 

 

~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
~ 
“names”  [New File]    0,0-1  All 

N.B. vi editor follows two modes – insert mode and the command mode.  

Linux is a case sensitive operating system. “c” is not “C”  



 35 

We are following the demo in the sequence shown below. 

 

 

 

 

 

  

 

• Commands related to insert mode 

• Adding text  

Getting more comfortable with the moving around the screen, we are now trying to add some text. 
To add the text into the file through vi editor you need to enter into the insert mode. The insert 
mode of the vi editor follows two scenario. 

Using the “i” (Insert) command 

Using the “a” (append) command 

 

Inserting a text using “i” (insert) command 
By pressing the “i” character you can have the insert mode of the vi editor. The characters typed 
by you are placed before the current character position. To come out from the insert mode, 
required to press an ESC key. 

 
 

 

 

 

 

 

 

  

After the ESC is pressed, the cursor moves back to the last character inserted, just as with the “a” 
command. 
 
 
 

 

 

 

 

 

 

  

To add text you position the cursor over a character and press an “a”. This puts you in a special 
mode of operations called “insert mode”. Now every thing typed is appended to the text after the 
character the cursor was positioned over: 

ESC 
 
 
 
 
 
 

Exit 
 from Insert 

i 
 

John 
Jim 
Pet 

Steve 
 

Insert text 

 
 

After Command 

_ 
~ 
~ 
~ 
~ 
~ 
~ 
“names” 0 lines 0 characters 

John 
Jim 
Pat 
Steve_ 
~ 
~ 
~ 
INSERT 

John 
Jim 
Pet 
Steve_ 
~ 
~ 
~ 
INSERT 

John 
Jim 
Pet 
Steve 
~ 
~ 
~ 
“names” 4,4  All  

 
 

Before Command 

Command Format 
 
Text to be typed 
 
Action taken 

 



 36 

 

 

 

 

 

 

 

  

When you are done adding text, you press the ESC key. When you press ESC key, the cursor 
moves back to the last character you entered. 
 

 

 

 

 

 

 

  

 
You can even put ↵ RETURNs (CR) in the added text, and new lines appear. 
 

 

 

 

 

 

 

  

 

The appending started between the z and hn of the first line, causing the hn to be carried to the 
next line when the CR i.e. (↵↵↵↵) was pressed. 
 
1. Perform the following changes to your file. Specify the command and the resulting text as a 

answer. 
Action Command typed Result 
Change Jim in line 3 to Jirem   
Insert a new line “Tom and Jerry” after 
line number 3.  

  

Insert a new line at the end   
 

Moving Around 
This is very essential to know about how to move the cursor around the screen to make additions 
or changes. The basic screen motion commands are h,j,k and l, situated next to each other on the 

a 
 

oneCR 
twoESC 

 
 
 

embedded CR 

a 
 

xxyyzz 
 

add xxyyzz 
 

John 
Jim 
Pat 
Steve 
~ 
~ 
~ 
“names” 4 lines 19 characters 

Joxxyyzzhn 
Jim 
Pat 
Steve 
~ 
~ 
~ 
~ 

Joxxyyzzone 
twohn 
Jim 
Pat 
Steve 
~ 
~ 
~ 

ESC 
 
 
 
 
 
 

Exit  
from Append 

Joxxyyzzhn 
Jim 
Pat 
Steve 
~ 
~ 
~ 
~ 

Joxxyyzzhn 
Jim 
Pat 
Steve 
~ 
~ 
~ 
~ 

Joxxyyzzhn 
Jim 
Pat 
Steve 
~ 
~ 
~ 
INSERT 



 37 

right side of the keyboard. The motions for h,j,k and l are left, down, up and right, respectively. H 
= �, j= ↓, k=↑, l=�. 
 
 

 

 

 

 

 

 

  

 
 
 

 

 

 

 

 

 

  

 
 
 

 

 

 

 

 

 

  

 
 
 

 

 

 

 

 

 

  

 

j 
 
 
 
 
 
 

Move down 

Joxxyyzzone 
twohn 
Jirem 
Tom and Jerry 
Pat 
Steve 
~ 
~ 

Joxxyyzzone 
twohn 
Jirem 
Tom and Jerry 
Pat 
Steve 
~ 
~ 

j 
 
 
 
 
 
 

Move right 

Joxxyyzzone 
twohn 
Jirem 
Tom and Jerry 
Pat 
Steve 
~ 
~ 

Joxxyyzzone 
twohn 
Jirem 
Tom and Jerry 
Pat 
Steve 
~ 
~ 

k 
 
 
 
 
 
 

Move up 

Joxxyyzzone 
twohn 
Jirem 
Tom and Jerry 
Pat 
Steve 
~ 
~ 

Joxxyyzzone 
twohn 
Jirem 
Tom and Jerry 
Pat 
Steve 
~ 
~ 

h 
 
 
 
 
 
 

Move left 

Joxxyyzzone 
twohn 
Jirem 
Tom and Jerry 
Pat 
Steve 
~ 
~ 

Joxxyyzzone 
twohn 
Jirem 
Tom and Jerry 
Pat 
Steve 
~ 
~ 



 38 

You can precede these keys with numbers, which allows you to move more than one column or 
line at a time. Command is nj, nh, nk or nl. For example 
3j – move 3 lines down. 
3h – move 3 columns left. 
3k – move 3 lines up. 
3l – move 3 columns right. 
If you try to move past the beginning or end of file, vi will “beep” at you. 
Consider the file contents given below. 

 

 

 

 

 

 

2. Perform the following operation with your file by specifying the command and the resulting 
text as answer. 

Action (from current cursor position) Command typed Result 
Move __ lines down   
Move __ columns right   
Move __ columns left   
Move __ lines up   
• Deleting Text  

Here we are focusing on how to delete a text. There are two commands that delete text in vi: x 
and d. 
To delete one character, you use the “x” command. “x” deletes the character at the end current 
cursor position, moving the rest of the line left into the void created by the deleted character. 
 

 

 

 

 

 

 

  

The “x” command can be preceded by a number to indicate how many characters you want to 
delete. You will get the “beep”, if you are trying to delete nonexistent characters. 
 

 

 

 

 

 

 

  

x 
 
 
 
 
 
 

Delete j 

oxxyyzzone 
twohn 
Jirem 
Tom and Jerry 
Pat 
Steve 
~ 
~ 

Joxxyyzzone 
twohn 
Jirem 
Tom and Jerry 
Pat 
Steve 
~ 
~ 

Joxxyyzzone 
twohn 
Jirem 
Tom and Jerry 
Pat 
Steve 
~ 
~ 

nx 
 
 

2x 
 
 
 

Move down 

oxxyyzzone 
twohn 
Jirem 
Tom and Jerry 
Pat 
Steve 
~ 
~ 

xxyyzzone 
twohn 
Jirem 
Tom and Jerry 
Pat 
Steve 
~ 
~ 



 39 

Sometimes you want to delete the entire line. The “x” command will get rid of all the characters on 
a line, but it won’t get rid of the line itself. To delete a line, you use the dd command, a special 
case of a more general delete. It can be preceded by a number to indicate the number of lines to 
delete. 
 
 

 

 

 

 

 

 

  

 
The “dd” command can be preceded by a number to indicate how many lines you want to delete. 
Highlight the cursor at the beginning of Jirem. 
 
 

 

 

 

 

 

 

  

3. Perform the following operation by specifying the command and the resulting text as answer. 
Action (from current cursor position) Command typed Result 
Delete 2 characters   
Delete 3 characters from 3rd line   
Delete 1st  line   
Delete 4th  line   
 
Miscellaneous Command 
If we need to undo the activity, it is achieved by means of “u” command. 
 
 

 

 

 

 

 

 

  

 

dd 
 
 

dd 
 
 
 

Delete xyyzzone 

ndd  
 

2dd 
 
 

Delete 
Jirem 

Tom and Jerry 

undo 
 last  

command 
 
u 
 
 
 

    undo delete 

xyyzzone 
twohn 
Jirem 
Tom and Jerry 
Pat 
Steve 
~ 
~ 

twohn 
Jirem 
Tom and Jerry 
Pat 
Steve 
~ 
~ 

twohn 
Jirem 
Tom and Jerry 
Pat 
Steve 
~ 
~ 

twohn 
Pat 
Steve 
~ 
~ 

twohn 
Steve 
~ 
~ 

twohn 
t 
Steve 
~ 
~ 



 40 

Cut the line(s) from the desired cursor position and paste those lines to the desired cursor 
position 
 
 

 

 

 

 

 

 

  

The “p” character is used to paste the line(s) before the desired cursor position. 
 
 

 

 

 

 

 

 

  

 
Copy the line(s) from the desired cursor position and paste those lines to the desired cursor 
position 
 
 

 

 

 

 

 

 

  

The “p” character is used to paste the line(s) before the desired cursor position. 
 

 

 

 

 

 

 

  

dd 
 
 
 
 
 

Cut line 
Pat 

twohn 
Pat 
Steve 
~ 
~ 

twohn 
Steve 
~ 
~ 

p 
 
p 
 
 

Paste line 
after 
steve 

twohn 
Steve 
~ 
~ 

twohn 
Steve 
Pat~ 

yy 
 

yy 
 
 
 

      Copy line 
Pat 

twohn 
Steve 
Pat 
~ 
~ 

twohn 
Steve 
Pat 
~ 

p 
 
p 
 
 
 

      Paste line 
After steve  

twohn 
Steve 
Pat 
~ 
~ 

twohn 
Steve 
Pat 
Pat 
~ 



 41 

:num  –command moves the cursor to the specified line number scrolling if necessary. 
 
 

 

 

 

 

 

 

  

 
:set nu  – command allows you to show the line numbers for the line(s) present in the screen 
editor. 
 
 

 

 

 

 

 

 

  

 
 
4. Perform the following operation by specifying the command and the resulting text as answer. 
Action (from current cursor position) Command typed Result 
Cut line 2, 3 and put those after twohn   
Copy line 3 and put it after line 4.   
Undo all the changes   
Locate the content at line 2   
• Control Commands 

• Saving the file  

The vi editor also changes a copy of the file that must be written before the file is actually 
changed. There are several ways to write file in vi editor, but the easiest way is through the “ZZ” 
command that automatically write the file and quit, putting you back on to the shell prompt. 
 

 

 

 

 

 

 

  

Usage of control commands through “:” prompt of vi editor. 

ZZ 
 
 
 
 

Write  
“names”  
and quit 

 
 

:3 
 
 
 

twohn 
Steve 
t 
t 
~ 
~ 
~ 
 “names” 4 lines, 16 

twohn 
Steve 
t 
t 
~ 
~ 
~ 
~ 

1 twohn 
2 Steve 
3 t 
4 t 
~ 
~ 
~ 
~ 

twohn 
Steve 
t 
t 
~ 
~ 
 “names” 4 lines, 16 characters 
$ _ 

twohn 
Steve 
t 
t 
~ 
~ 
~ 
: 3 

twohn 
Steve 
t 
t 
~ 
~ 
~ 
: set nu 



 42 

1. :w – command write the file without quitting  vi editor. 

 

 

 

 

 

 

 

  

:wq –  command write the file and put you back on to the shell prompt. 
 
 

 

 

 

 

 

 

  

 
2. :q – command quits vi editor. 

 

 

 

 

 

 

 

  

3. :q!  – command quits vi without writing, discarding all changes. 

 

 

 

 

 

 

 

  

 
 

:q! 
 
 
 
 

quits vi  
without  
writing,  

discarding all 
changes 

:q 
 

:q 
 
 

quits  
from file 

:wq 
 
 
 
 

Write 
 with  

the file  
and quit 

:w 
 
 
 
 

Write 
 with the 

 file 

twohn 
Steve 
t 
t 
~ 
~ 
~ 
:w 

twohn 
Steve 
t 
t 
~ 
~ 
~ 
:wq 

twohn 
Steve 
t 
t 
~ 
~ 
~ 
:q 

twohn 
Steve 
t 
t 
~ 
~ 
~ 
:q! 

twohn 
Steve 
t 
t 
~ 
~ 
 “names” 4 lines, 19 characters 
$ _ 

twohn 
Steve 
t 
t 
~ 
~ 
 “names” 4 lines, 19 characters 
$ _ 

twohn 
Steve 
t 
t 
~ 
~ 
 “names” 4 lines, 19 characters 
$ _ 

twohn 
Steve 
t 
t 
~ 
~ 
~ 
 “names” 4 lines, 19 characters 



 43 

4. Perform the following operation by specifying the command and the resulting text as answer. 
Action (from current cursor position) Command typed Result 
Create the file called “test “ to test the other 
commands containing text as shown below 

  

Apply operations covered so far on the file    
            

            

            

            

            

           

 

String Searching 

The vi editor can search for strings, by typing in a “/”followed by the string you want to search for 
followed by a CR (↵).  The vi editor then scans for the next occurrences of the strings. 
 
 

 

 

 

 

 

 

  

 
 
 

 

 

 

 

 

 

  

 
5. Perform the following operation by specifying the command and the resulting text as answer. 
Action (from current cursor position) Command typed Result 
Search for keyword guy   
 

Word Commands 

The vi editor knows about objects called words that are simply letters and numbers separated by 
blank, tabs or punctuation marks. The vi editor allows you to move from word to word, delete 
them and change them with simple commands. 

/ Q(CR)↵ 

 
 
 
 
 

search for “Q” 
 

Police inspector 
came by and asked Q “who is this 
guy?” 
Q replied, “I don’t know, but his 
face rings a bell.” 
~ 
~ 
~ 

Police inspector 
came by and asked Q “who is this 
guy?” 
Q replied, “I don’t know, but his 
face rings a bell.” 
~ 
~ 
~ 

Police inspector 
came by and asked Q “who is this 
guy?” 
Q replied “I don’t know, but his 
face rings a bell.” 
~ 
~ 
~ 

/ Q(CR)↵ 

 
 
 
 

search for 
previous “Q” 

 

Police inspector 
came by and asked Q “who is this 
guy?” 
Q replied, “I don’t know, but his 
face rings a bell.” 
~ 
~ 
~ 

Police inspector 
came by and asked Q “who is this 
guy?” 
Q replied “I don’t know, but his 
face rings a bell.” 
~ 
~ 
~ 



 44 

1. w command 

Moves the cursor to the next word. 

 

 

 

 

 

 

 

  

 

2. b command 

Moves the cursor backward a word. 

 

 

 

 

 

 

 

 

  

      

3. e command 

Moves the cursor to the end of a word. 

 

 

 

 

 

 

 

  

 

Deleting and Changing text 

The vi editor provides you with several ways to delete and change text. One method of deleting 
text is with the “d” command. The “d” command is always followed by another character that 
specifies what will be deleted. 

w 
 

w 
 
 

go to 
 next 
 word 

b 
 
b 
 
 

go back 
 to  

word 

e 
 
e 
 
 

go to 
 end of  
word 

Police inspector 
came by and asked Q “who is this 
guy?” 
Q replied, “I don’t know, but his 
face rings a bell.” 
~ 
~ 
~ 

Police inspector 
came by and asked Q “who is this 
guy?” 
Q replied “I don’t know, but his 
face rings a bell.” 
~ 
~ 
~ 

Police inspector 
came by and asked Q “who is this 
guy?” 
Q replied, “I don’t know, but his 
face rings a bell.” 
~ 
~ 
~ 

Police inspector 
came by and asked Q “who is this 
guy?” 
Q replied “I don’t know, but his 
face rings a bell.” 
~ 
~ 
~ 

Police inspector 
came by and asked Q “who is this 
guy?” 
Q replied, “I don’t know, but his 
face rings a bell.” 
~ 
~ 
~ 

Police inspector 
came by and asked Q “who is this 
guy?” 
Q replied “I don’t know, but his 
face rings a bell.” 
~ 
~ 
~ 



 45 

Dw command  – command is use to delete a word. 
 
 

 

 

 

 

 

 

  

 

6. cw command  – command is use to change a word. 

 

 

 

 

 

 

 

  

 

Signature of the instructor   
 

Date  
 

/       /           

 

 
Set A 

�  1. Create a file by name _________ at least 25 lines long using vi editor’s input commands – “a” 
and “i”. Also try the replace mode by examining the toggle feature of “i” character. 

�  2. Create a file by name _________ at least 25 lines long using vi editor’s input commands – “a” 
and “i”. Also try search command on the file. 

 
Signature of the instructor   

 
Date  

 

/       /           

 
Set B 
 
�  1. Create a file name _____ containing five lines and execute the following set of commands of 
vi editor and describe the result on the paper. 
 
 

Sr. No. Command 

1 ^U      
2 ^B      
3 o 

dw 
 

dw 
 
 

delete  
word 

cw 
 

cwy?ESC 
 
 

       change 
 word 
Enter  

change 

Police inspector 
came by and asked Q “who is this 
guy?” 
Q replied, “I don’t know, but his 
face rings a bell.” 
~ 
~ 
~ 

Police inspector 
came by and asked Q “who is this 
guy” 
Q replied “I don’t know, but his 
face rings a bell.” 
~ 
~ 
~ 

Police inspector 
came by and asked Q “who is this 
gu?” 
Q replied, “I don’t know, but his 
face rings a bell.” 
~ 
~ 
~ 

Police inspector 
came by and asked Q “who is this 
guy?” 
Q replied “I don’t know, but his 
face rings a bell.” 
~ 
~ 
~ 



 46 

4 O 
5 n 
6 N 
7 dw 

 
�  2. Create a file name _____ containing five lines and execute the following set of commands of 
vi editor and describe the result on the paper. 

 
 
 
 

 

 

 

 

Signature of the instructor   
 

Date  
 

/       /           

 

 

Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  
 

Sr. No Command 
1 cc 
2 D 
3 C 
4 s 
5 S 
6 rchr 
7 R 



 47 

 

Exercise 6   Start Date  
    

      /      / 
 

 

 
To understand shell programming and use of different conditional statements in shell 
programming. 

 
You should read following topics before starting this exercise 
1. What is a shell and different shells in UNIX? 
2. LINUX commands 
3. Shell programming statements, operators and conditional statements  

 
The set of internal commands provided by shell can be combined into a language with its own 
variables, operators, conditional statements and loops called shell programming language. It 
helps in combining basic shell commands into a complex service commonly required by users. 
The UNIX system administrator should be an accomplished shell programmer. Shell programs 
run in interpretive mode ,i.e., one statement at a time. 
Shell program is stored in a file usually with .sh extension. 
The shell program can be executed in one of the following ways 

a) using  sh command along with the file name for example  $ sh myshell.sh 
In case the program accepts  filename as command line argument then 
$sh myshell.sh file1 

b) Make the file executable by using chmod command and then typing the filename at $ 
prompt   for example 

$ chmod +x myshell.sh 
$ myshell.sh 

In case the program accepts  two integers as command line argument then 
$ myshell.sh  45 36 
 

The command line arguments specified to a shell procedure are assigned to certain special 
variables or positional parameters such as $0, $1 etc.. $0 stores the filename of the shell script, 
while $1 is first argument, $2 is second argument and so on. $* stores, the entire list of 
arguments, as a single string. $# stores the total number of arguments passed to the script. The 
positional parameter $?, Stores the exit status of the last command. It has the value 0 if the 
command succeeds, and a non-zero value if the command fails. 
 
Different operators used in shell expressions 

 

 
Different statements used in shell script are 
Statement  Usage Example 
read  to accept input from user. read  n 

read name 

Meaning Example 
Number of arguments greater than 3  $#  -gt  3  
Value of a less than or equal to 0 $a  -le 0 
Value of a less than 3 and greater than or equal to 5 $a  -lt  3  -a  $a –ge 5 
Value of choice equal to “y” or “Y” [ $choice =”y” –o $choice =”Y” ] 
Number of arguments not equal to 2 $#  -ne  2  
If not  number of arguments equals  3 !  $#  -eq 3 
True if name is not null string   -n  $name 
True if string name is null string      -z  $name 
True if string name is same as abc $name = “abc” 
True if string name is not same as abc $name != “abc” 



 48 

echo  
 

to display output to user. echo “ Give your name” 
echo “Enter first number” 

expr  It is used to do arithmetic 
operations as also convert string 
to integer. 

sum=`expr $a + $b` 
x=`expr $x + 1` 

Test 
[    ] 

Evaluates expression on its right 
or evaluates expression within 
square brackets 

x=5; y=7;  
test $x –eq $y ; echo $? 
 
read choice 
If [ $choice =”y” –o $choice =”Y” ] 
then 
exit 

If  - then fi For conditional branching If grep “$1” $2 
echo “pattern found”  

if  - then  - else - fi For Two-way conditional 
branching 

If [ $# -eq 1 ]  
then  
cat  $1 
else  
echo “ wrong no of arguments” 
fi 

If  - then - elif  - 
then  -  else -  fi 

Nested if statements If [ $# -eq 3 ]  ; then 
# semicolon separator is required  
# as if and then are on same line 
grep “$1” , $2 > $3 
elif   [ $# -eq 2 ]  
grep “$1” $ 2  
else  
echo “ wrong no of arguments “ 
fi 

case   - esac 
 

Multiple branching read answer 
case $answer in 
 [yY]*)  exit  ;; #matches Yes yes 
 [nN]*)  echo No ;; 
       *)  echo “Invalid response” 
  esac 

 
Different statements used in testing file status 
Test Meaning 
-e filename true if file exists 
-f filename               true if file exists and is a regular file 
-r filename true if file exists and is readable 
-w filename true if file exists and is writable 
-x filename true if file exists and is executable 
-d filename true if file exists and is a directory 
-s filename true if file exists and has size >0. 
 
Sample programs 
Sr. 
No 

Program statement Program code 

1 An interactive program that 
accepts month name and 
checks with current date if the 
person is late 

#The program accepts the date 
echo “enter the date”                                                  
read dt    
a= `date +%d` 
# a stores the day value of current date as string 
a=`expr $a + 0`   
# converting to integer  
# note space before and after +                                                         
if  [ $a  -gt  $dt ]           
# note space before and after brackets                                                    



 49 

then                                                                        
echo “You are late by $a -$dt days”                                                                                                                    
fi                                                 

2 A command line program that 
accepts only two arguments 
and outputs sum and product 
of the two 

# program accepts two arguments 
if  test $#  -ne  2  ; then 
# semicolon separator is required as if and then  
# are on the same line 
echo “wrong number of arguments” 
else  
tot=`expr $1 + $2` 
# * is escaped to be treated as mult operator  
# and not as a wild  character 
prod=`expr $1 \* $2`  
echo The total is $tot  
echo The product is $prod  
fi  
 

3 A interactive program that 
accepts filename and checks 
whether it is regular file or 
directory 

echo “Enter the filename” 
read fname 
# checks if value entered is null 
If [ -z $fname ] ; then 
# semicolon separator is required as if and then 
#are on the same line 
echo you have not entered filename 
elif [ ! -e $fname ] ; then ; echo file does not exist 
elif [ -f $fname ] ; then ;  echo $fname is regular 
elif [ -d $fname] ; then ; echo $fname is directory 
else  
echo $fname is a special file 
fi  

 

 
Type the examples given for different statements in files with .sh extension and execute them 
 
�  1. Type the sample program 1, execute it for different date values and modify it to a program 
that decides the file as late by accepting both month and date. Modify the program to one that 
accepts value as command line arguments 
 
�  2. Type the sample program 2, execute it for different values and modify it to a program that 
prints quotient and divisor of command line arguments. Modify the program to one that accepts 
values interactively from user. 
 
�  3. Type the sample program 3, execute it for different values and modify it to a program that               
checks for a regular file if it is readable or writable giving appropriate message. 
 

Signature of the instructor   
 

Date  
 

/       /           

 

 
 
Set A 
�  1. Write a shell script to accept a file name, check if it is regular & show it’s contents. (use cat 
command) 
 
�  2. Write a shell script to accept a file name, check if it is regular & display number of words in a 
file. (use wc command) 



 50 

 
�  3.  Write a shell script to accept a name, check if it is directory & display its contents. (use ls 
command) 
 
�  4.  Write a shell script to accept a file name, and accept a pattern and display lines from the file 
in which the pattern is present. (use grep command) 
 
�  5. Write a shell script to accept a name, and create a copy of it named as this name-
(hypen)copy in the same directory  . (use cp command) 
 
�  6.  Write a shell script to display “ Good Morning”, “ Good afternoon” , and “Good evening” 
depending on the hour (use date command) 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set B 
 
�  1.  Write a shell script to accept argument string , and display present working directory if 
argument string is “current” ,display parent directory if argument string is “parent” and display the 
contents of root directory if argument string is “root” (use pwd, cd and ls command) 
 
�  2.  Write a shell script to accept an extension name such as txt and display the contents of all 
files with this extension, if there exists a file with this extension or give appropriate message (use 
cat with wild cards and ls) 
 
�  3.  Write a shell script to accept as argument an extension name such as .txt and move the 
contents of all files with this extension to a directory by the same name  (use mkdir and mv) 
 
�  4.  Write a shell script to accept a file  name , and display file details if the file exists and a 
suitable message if it does not. (use grep and ls) 
 

Signature of the instructor   
 

Date  
 

/       /           

Set C 
 
�  1.  Write a shell script which accepts a filename, displays menu with following options, accepts 
user choice as number and takes appropriate actions 
 
Number Menu option Expected Action 
1 Contents Display the file contents 
2 Size in blocks Display the file Size in blocks 
3 Number of words  Display the number of words in file 
4 Last five lines Display last five lines of the file 
5 First ten lines Display first ten lines of the file 
 
�  2.  Write a shell script that displays menu with following options, accepts user choice as number 
and takes appropriate actions 
 
Number Menu option Expected Action 
1 No of users Displays the No of users looged in 
2 Current user Display the login id of user logged i 
3 Current Directory  Display the present working directory 
4 Home Directory Display the home directory of logged in user 
5 Current Path Display the path  
 
�  3.  Write a shell script that displays menu with different DOS commands, accepts user choice 
as letters of the command and executes appropriate linux command after accepting required 
arguments as given below. 



 51 

 
Number Menu option Linux command 
1 Dir use ls 
2 Copy Accept filenames and use cp command 
3 Type Accept filename and use cat command 
4 delete Accept filename and use rm command 
5 date Use date  
 

Signature of the instructor   
 

Date  
 

/       /           

 
 

Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  
 



 52 

 
Exercise 7   Start Date  

    

      /      / 
 

 

 
Shell programming using control structures and writing shell scripts 

 
You should read following topics before starting this exercise 
1. Linux commands 
2. Shell programming statements and loops 

 
Shell provides following loop structures 
Loop 
structure 

Syntax  Example  

While while  [condition] 
    do 
       commands 
   done 

     i=`date +%m` 
     i=`expr $i + 0`  
 # store the value of current month in i 
    while [ $i -gt 0 ] 
    do 
    mkdir file$i 
 # decrementing the value of i 
      i=`expr $i - 1` 
      done       

Until until [condition] 
    do 
       commands 
   done  
 

 i=1 
# checking if file$i is not a directory 
until [ ! -d file$i ]  
do  
cp abc.txt  file$i 
i=`expr $i + 1` 
done 

For for variable in list  
do  
   commands 
done 

for i  in 1 2 3 4  
do 
echo “deleting all files in directory file$i” 
# displaying the contents of directory 
ls file$i 
 done 
echo “ job over “ 

 
Some shell commands are specially useful when writing shell programs. 
 We will consider some of them 
 

Command  Used for Example 

set Allows the arguments to be stored as 
$1, $2 and so on 

$set  23 45  

$echo “\$1 is $1 and \$2 is $2” 

$set  `date` 

$echo “\$1 is $1 and \$2 is $2” 

$echo $* 

shift Shifts the arguments to the left, When 
executed once $2 becmes $1, $3 
becomes $2 and so on. 

$echo $1  $2  $3 

$shift 

$echo $1  $2  $3 

cut Used to slice a file vertically, -c is used 
for cutting columns, -f is used for cutting 

$ls  -l > dirfile 



 53 

fields , -d is used for specifying delimiter $cut –c 1-10, 17-20 dirfile 

$cut –d’ ‘ -f 1,6  dirfile 

 

 
Type the examples given above for “while” , “until” and “for” and execute them in that order. Use 
shell commands to verify the outcome. 
 
Write the outcome when you execute the following set of commands at shell prompt 
�  1     
 

name=date 
$name 
`$name` 

�  2 set `date` 
shift 
cal “$5”  

�  3 set `wc  abc.txt` 
shift 
echo the number of characters is $2 

�  4 set `who` 
shift 
echo My terminal is $1 

�  5 who > userlist 
cut  -d’ ‘ –f 1, 3  userlist 

 
Signature of the instructor   

 
Date  

 

/       /           

              

 
Set A 
�  1. Write a shell script which prints file name followed by first line of each file in the current 
directory. 
 
�  2. Write a shell script which checks if any of the strings in the output of date command are 
present in the dirfile 
 
�  3. Write a shell script which accepts directory names till a valid directory name is given. It 
should give appropriate message if directory is not present. 
 
�  4. Write a shell script to print the information as to how many  files and how many directories 
are present in current directory. 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 
Set B 
 
�  1. Write a shell script to print the information of all files in current directory in the following 
format 
Name of the file    -followed by name of the file 
Directory      - followed by yes or no 
Date of last modification - followed by date of last modification 
Size – followed by file size 
 



 54 

�  2. Write a shell script that accepts name from the user and creates a directory by that name, 
then creates a text file in that directory and stores in it, the  data accepted from user(till ^z), and 
displays  the number of characters stored in the file. The program stops if directory name given is 
null. 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 

Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  
 



 55 

 
Exercise 8   Start Date  

    

      /      / 
 

 

 
Creating simple HTML pages. 

 
You should read following topics before starting this exercise 
1. Internet and web 
2. web browsers and web servers 
3. HTML tags 

 
 
Internet and the Web 
The internet is a collection of connected computers that communicate with each other. The Web 
is a collection of protocols (rules) and software’s that support such communication. 
In most situations when two computers communicate, one acts as a server and the other as a 
client, known as client-server configuration. 
Browsers running on client machines request documents provided by servers. Browsers are so 
called because they allow the user to browse through the documents available on the web 
servers. A browser initiates the communication with a server, requesting for a document. The 
server that is continuously waiting for a  request, locates the requested document and sends it to 
the browser, which displays it to the user 
The most common protocol on the web is HyperText Transfer protocol(HTTP) 
The most commonly used browsers are Microsoft Internet Explorer (IE).  Netscape browser and 
Mozilla.The most commonly used web servers are Apache and Microsoft Internet Information 
server(IIS). 
 
HTML  
 
HyperText Markup Language is a simple markup language used to create platform-independent 
hypertext documents on the World Wide Web. Most hypertext documents on the web are written 
in HTML. 
 
You will need a simple text editor to write html codes. For example you can use  notepad in 
windows an                        in Linux operating system. You will need a browser to view the html 
code, you can use IE on windows and Mozilla on Linux operating system. 
 
HTML tags are somewhat like commands in programming languages.  Tags are not themselves 
displayed, but tell the browser how to display the document’s contents. 
Every HTML tag is made up of a tag name, sometimes followed by an optional list of attributes, all 
of which appears between angle brackets < >. Nothing within the brackets will be displayed in the 
browser. The tag name is generally an abbreviation of the tag’s function. Attributes are properties 
that extend or refine the tag’s function. The name and attributes within a tag are not case 
sensitive. Tag attributes, if any, belong after the tag name, each separated by one or more 
spaces. Their order of appearance is not important. Most attributes take values, which follow an 
equal sign (=) after the attribute’s 
name. Values are limited to 1024 characters in length and may be case sensitive. Sometimes the 
value needs to appear in quotation marks (double or single). 
 
 Most HTML tags are containers, meaning they have a beginning start tag and an end tag. An end 
tag contains the same name as the start tag, but it is preceded by a slash (/).  Few tags do not 
have end tags. 
 
Some HTML tags required to design simple web pages are given below 



 56 

Tag Description  Attributes  Example  
<!-- ... --> Allows one to insert 

a line of browser-
invisible comments 
in the document 

 <!— Starting my first 
web page --!> 
 

<HTML> 
</HTML> 

<HTML> tag tells 
the browser that 
this is start of the 
HTML and 
</HTML> marks its 
end. 
 

  
<HTML> 
Hello world! 
</HTML> 

<HEAD> 
</HEAD>  

Every html page 
must have a 
header. < Head> 
tag defines the 
Head Segment of 
an html document  

  

<TITLE> 
</TITLE> 

One of the most 
important parts of a 
header is title. Title 
is the small text 
that appears in title 
bar of viewer's 
browser. 

 <HEAD> 
<TITLE> My Web 
page </TITLE> 
</HEAD> 

<BODY> 
</BODY> 

Every web page 
needs a body in 
which one can 
enter web page 
content 

background = designates a 
file to be displayed as 
background 
bgcolor ="#(hexadecimal color 
code)" sets the background 
color 
text ="#(hexadecimal color 
code)" sets the color of plain 
text. Text color default is black. 

<BODY 
BGCOLOR="#00FF00"   
text=”#FF0000”> 
Page with Green Color 
and red Text 
</BODY> 
Format of color 
number is RRGGBB, 
so if we write 00FF00 
we mean (red=0, 
green=255, blue=0) 

<BR> A single tag used 
to break lines 

clear=all|left|right  
Breaks the text and resumes 
the next line after the specified 
margin is clear. 

line <BR> is broken 
 

<p> A single tag used 
to break text. 
Breaking text with 
the <p> tag adds 
vertical spacing 

 <p> break the line 
<p>adding extra space 

<B> </B> To make text 
appear bold 

 <B>This text will 
appear bold</B> 

<U> </U> To make text 
appear underlined 

 <U>This text will 
appear underlined</U> 

<I> </I> To make text 
appear italic 

 <B><I>This text is both 
Bold and italic</I> 

<CENTER> 
</CENTER> 

Centers enclosed 
text 

 <CENTER>  Text is 
centered </CENTER> 

<FONT> 
</FONT> 

To change font 
which affects the 
style (color, 
typeface, and size) 
of the enclosed 
text. 

color="#(hexadecimal color 
code)" sets the color. 
face=typeface (or list of 
typefaces) sets  a typeface for 
the text ( if it is on the user’s 
machine) 
size=value Sets the size of the 

<FONT SIZE="5" 
FACE="ARIAL" 
COLOR="#00FF00"> 
How is this ? 
</FONT> 



 57 

type to an absolute value on a 
scale from 1 to 7 (3 is the 
default) 

<BIG>  </BIG> Sets the type one 
font size larger 
than the 
surrounding text 

  

<SMALL>  
</SMALL> 

Sets the type one 
font size smaller 
than the 
surrounding text 

  

<BLINK> 
</BLINK> 

Causes the 
contained text to 
flash on and off. 

  

<SUB> </SUB> Formats enclosed 
text as subscript. 

 a<SUB> <SMALL> o 
</SUB> </SMALL> 

<SUP> </SUP> Formats enclosed 
text as superscript. 

 x<SUP> <SMALL> 2 
</SUP> </SMALL> 

<MARQUEE> 
</MARQUEE> 

Creates a scrolling-
text marquee area. 

align=top|middle|bottom 
Aligns the marquee with the 
top, middle, or bottom of the 
neighbouring text 
line. 
behaviour=scroll|slide|alternate 
Specifies how the text should 
behave. Scroll is the default 
setting and 
means the text should start 
completely off one side, scroll 
all the way across 
and completely off, then start 
over again. Slide stops the 
scroll when the text 
touches the other margin. 
Alternate means bounce back 
and forth within 
the marquee. 
bgcolor="#rrggbb" or color 
name 
Sets background color of 
marquee. 
direction=left|right 
Defines the direction in which 
the text scrolls. 
height=number 
Defines the height in pixels of 
the marquee area. 
hspace=number 
Holds n pixels space clear to 
the left and right of the 
marquee. 

<MARQUEE align=top 
behaviour =slide 
bgcolor=”#00FF00”  
direction=right  
height=20 hspace =5 > 
scrolling all the way 
from one end to other 
</MARQUEE> 

<IMG> loads an inline 
image 

src= “ text” Provides the URL 
of the graphic file to be 
displayed 
alt="text" Provides alternate 
text if the image cannot be 
displayed. 
height=number 
Specifies the height of the 
image in pixels. 

 



 58 

width=number 
Specifies the width of the 
image in pixels. 

 
An HTML document is divided into two major portions: the head and the body.The head contains 
information about the document, such as its title and “meta” information describing the contents. 
The body contains the actual contents of the document (the part that is displayed in the browser 
window). 
 
A sample HTML document is given below 
<!— Starting my first web page assignment --!> 
<HTML> 
<HEAD> 
<TITLE> My Web page </TITLE> 
</HEAD> 
<BODY BACKGROUND=” myimage.jpg”  text=”#FF0000”> 
The <FONT size=6 > Font size </FONT> can be changed <Br> as well as <FONT 
color=”#0000FF” > color of the text </Font> <BR> sometimes I prefer to change the <B> Style or 
</B>underline <U> the text </U> 
<MARQUEE align=bottom  behaviour =scroll bgcolor=”#00FF00”  direction=left  height=20 
hspace =5 >  Good Bye have a nice time </MARQUEE> 
</BODY> 
</HTML> 
 
 
 

 
Create a background image called myimage.jpg by using any picture creating tool. Type the 
above sample html program in the text editor and view it through the browser. Modify it to include 
some blinking text.  
 
 

Signature of the instructor   
 

Date  
 

/       /           

 

 
Set A 
�  1. Create an html page with 7 separate lines in different sizes. State size of each line in its text. 
 
�  2. Create an html page with 7 separate lines in different colors. State color of each line in its 
text. 
 
�  3. Create an html page with all the different text styles (bold, italic and underlined) and its 
combinations on separate lines. State style of each line in its text.  
 
�  4. Create an html page containing the polynomial expression as follows 
            ao + a1x+ a2x

2 + a3 x
3 

 
�  5. Create an html page with red background with a message “warning” in large size blinking. 
Add scrolling text “read the message” below it. 
 
 

Signature of the instructor   
 

Date  
 

/       /           

Set B 



 59 

 
�  1.  Create an html page with following specifications 
a. Title should be about myself 
b. Color the background with pink color 
c. Place your name at the top of the page in large text and centered 
d. Add names of your family members each in a different size, color, style and typeface 
e. Add scrolling text with a message of your choice 
f . Add your image at the bottom 
 
�  2. Create an html page with following specifications 
a. Title should be about mycollege 
b. Put the windows Logo image in the background 
c. Place your College name at the top of the page in large text followed by address in smaller size 
d. Add names of courses offered each in a different color, style and typeface 
e. Add scrolling text with a message of your choice 
f . Add college image at the bottom 
 
�  3. Create an html page with following specifications 
a. Title should be about myCity 
b. Place your City name at the top of the page in large text and in blue color 
c. Add names of landmarks in your city each in a different color, style and typeface 
d  One of the landmark, your college name should be blinking 
e. Add scrolling text with a message of your choice 
f . Add some image at the bottom 
 
 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 

Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  
 

Exercise 9   Start Date  
    

      /      / 
 

 

 
HTML programming using lists, tables, frames and hyperlinks. 

 
You should read following topics before starting this exercise 
1. Use of hyperlinks for navigating through pages 
2. Use of lists , tables and frames 

 
Lists  : Lists are a great way to provide information in a structured  and easy to read format. 

There are two types of lists :  
1] Numbered List (Ordered List) 
 An ordered list is used when sequence of list items is important.   
2] Bulleted List (Unordered List) 
 An unordered list is a collection of related items that have no special order or sequence.   
Tags used to create lists are given in the following table. 
 



 60 

Tag Description  Attributes  Example  
<LI> Specify the list item.   
<OL> 
</OL> 

The <OL> tag formats 
the contents of an 
ordered list with 
numbers. The 
numbering starts at 1. 
It is incremented by 
one for each 
successive ordered list 
item tagged with <LI> 

Type = a/A/i/I/1 
Sets the numbering style to a,A,i, 
I,1 default 1 
start = “A” 
Specifies the number or letter 
with which the list should start. 

<body bgcolor= "pink"> 
<font face = "Arial” size= 
"6" color = "green"> 
<u> 
List of Cities.... 
</u> 
</font> 
<ol type = "A" start = "A"> 
<li> Mumbai 
<li> Pune 
<li> Nashik 
<li> Nagpur 
</ol> 
</body> 
 

<UL> 
</UL> 

<UL> tag defines the 
unordered list of items 

Type = disc/square/circle 
Specifies the bullet type. 

<body bgcolor= "sky blue" 
text =”yellow”> 
<font face = "Arial” 
size="6" color= "orange"> 
<i><u><b> 
List of Fruits 
</i></u></b> 
<ul type = "square"> 
<li> Apple 
<li> Pinapple 
<li> Mango 
<li> Guava 
</ul> 
</body> 
 

 
Tables :  A table is a two dimensional matrix, consisting of rows and columns. HTML tables are 

intended for displaying data in columns on a web page. Tables contains information such 
as text, images, forms, hyperlinks etc.  

Tags used to create table are given in the following table. 
 
Tag Description  Attributes  
<TABLE> 
</TABLE> 
 

Create a 
table 

Border=number 
Draws an outline around the table rows and cells of width equal to 
number. By default table have no borders number =0. 
Width=number Defines width of the table. 
Cellspacing=number Sets the amount of cell space between table 
cells. Default value is 2 
Cellpadding=number Sets the amount of cell space, in number of 
pixels between the cellborder and its contents. Default is 2 
Bgcolor=”#rrggbb” sets background color of the table 
Bordercolor=”#rrggbb” sets border color of the table 
align=left|right|center 
Aligns the table. The default alignment is left 
frame=void|above|below|hsides|lhs|rhs|vsides|box|border 
Tells the browser where to draw borders around the table 

<TR> 
</TR>  

Creates a 
row in the 
table 
 

 

<TH> 
</TH>  

Cells are 
inserted in a 

 



 61 

row of the 
table for 
heading 
 

<TD> 
</TD>  

Data cells 
are inserted 
in a row of 
the table  
 

 

   
 
A sample HTML document for creating table is given below 
<html> 
<head> 
</head> 
<body> 
<table border = 2 cellspacing = 4 cellpadding = 4 bordercolordark = "red" 

bordercolorlight = "blue" align = "center"> 
<caption> List of Books </caption> 
<tr> 
<th rowspan = 2 align = "center"> Item No </th> 
<th rowspan = 2 align = "center"> Item Name </th> 
<th align = "center" colspan = 2> Price </th> 
</tr> 
<tr> 
<th align = "center"> Rs. </th> 
<th align = "center"> Paise </th> 
</tr> 
<tr> 
<td align = "center"> 1 </td> 
<td align = "center"> Programming in C++ </td> 
<td align = "center"> 500 </td> 
<td align = "center"> 50 </td> 
</tr> 
<tr> 
<td align = "center"> 2 </td> 
<td align = "center"> Programming in Java </td> 
<td align = "center"> 345 </td> 
<td align = "center"> 00 </td> 
</tr> 
</table> 
</body> 
</html> 
 
 
Hyperlinks :  Hyperlink is a specialized feature of HTML. Instead of clicking through sequentially 
organized pages, a hypertext user clicks specially highlighted text called ‘hyperlink’. Hyperlinks 
are technically known as anchors. They are usually visible in blue underlines. 
 
Tags used to add hyperlinks lists are given in the following table. 
 
Tag Description  Attributes  Example  
<A> 
</A> 

Add an anchor or 
hyperlink. 

href=url 
Specifies the URL of the 
target page. 
 

<BODY> 
<A 
HREF="http://www.yahoo.com">Click 
here to visit Yahoo</A> 
</BODY> 

 



 62 

Frames : Using frames, one can divide the screen into multiple scrolling sections, each of which 
can display a different web page into it. It allows multiple HTML documents to be seen 
concurrently 

 
Tags used to add frames are given in the following table. 
 
Tag Description  Attributes  Example  
<FRAMESET> 
</FRAMESET> 

Splits browser 
screen into 
frames. 

Rows=number helps in 
dividing the browser screen 
into horizontal sections or 
frames.  
Cols=number divides the 
screen into vertical sections 
or frames.  
The number written in the 
rows and cols attribute can be 
given as absolute numbers or 
percentage value or an 
asterisk can be used to 
indicate the remaining space. 
 

<frameset rows = “20%, 
30%, *”> 

<FRAME> 
</FRAME> 

used to define 
a single frame 
in a 
<frameset> 
 

name=text 
Assigns a name to the frame 
noresize 
Prevents users from resizing 
the frame. 
src=url 
Specifies the location of the 
initial HTML file to be 
displayed by the frame. 
bordercolor=”#rrggbb” or 
color name Sets the color for 
frame’s borders 

<html> 
<frameset rows = "50%, *">  
<frameset cols = "50%, *"> 
<frame src = "success.html" 
name = "frm1"> 
<frame src = welcome.html"> 
</frameset> 
<frame src = "failure.html"> 
</frameset> 
</html> 
 

 
�  1. Create an html program using the body given in the example for ordered list. Modify it to 
change the color of the item text to ____ and reduce the size of text one smaller than the heading. 
�  2. Create an html program using the body given in the example for unordered list. Modify it to 
change the shape of the bullet to ____and also reduce the size of bulleted items one smaller than 
the heading. 
�  3.Type the sample HTML program  using tables. Modify it to remove Rs and paise column and 
specify price as 500.50 
�  4.Type the sample HTML program  using frames. Create the required html files with appropriate 
messages. Modify it to change to a different frame structure. 
 
Instructor should fill in the blanks with appropriate values. 
 

Signature of the instructor   
 

Date  
 

/       /           

 

 
Set A 
�  1. Write the HTML code which generates the following output.  

• Coffee 
• Tea 

� Black Tea 



 63 

� Green Tea 
1] Africa 
2] China 

• Milk 
 
�  2. Write the HTML code which generates the following output.  

Country Population (In Crores) 

INDIA 

1998 85 

1999 90 

2000 100 

USA 

1998 30 

1999 35 

2000 40 

UK 

1998 25 

1999 30 

2000 35 

 
�  3. Divide the frame into different sections as shown below and add appropriate html files to 
each frame. 

 

First Frame : Name and Address 

Second Frame 

Bulleted list of qualifications 

Third Frame 

 Links to  Favourite sites 

Fourth Frame 

Scrolling Message 

Fifth Frame 

Blinking reminders  

Sixth Frame  

image 

 
Signature of the instructor   

 
Date  

 

/       /           

 
Set B 
 
�  1. Create an html page with appropriate frames containing Heading and other information. Add 
a bulleted list of your favourite subjects. For each subject make a nested list that contains, 
teacher name, the start and end time. Add your photograph and message in a separate frame 
Add link to teacher or college web site wherever teacher name appears. 
�  2. Create an html page with appropriate frames containing Heading and other information. Add 
an ordered  list of your educational qualifications. For each course make a nested list that 
contains, university or board name, the year and the percentage scored. Add link to university site  
where university name appears. Add your college photograph and message in a separate frame 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 

 

Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 64 

 
Exercise 10   Start Date  

    

      /      / 
 

 

 
Creation of forms, small case study to create HTML pages using all the above learnt techniques. 

 
You should read following topics before starting this exercise 
1. Creating HTML forms 
2. Use of forms for accepting user input 

 
Forms : HTML provides better & more extensive support for collecting user inputs through 
forms. A form can be placed anywhere inside the body of an HTML document. 
You can have more than one form in the document.  
Tags used to add input forms are given in the following table. 
 
Tag Description  Attributes  Example  
<FORM> 
</FORM> 

Creates a 
form 

action="URL" Gives 
the URL of the 
application that is to 
receive & process 
the forms data.  
method="get" or 
"post" Sets the 
method by which 
the browser sends 
the forms data to 
the server for 
processing.  

<html> 
<body bgcolor = "pink"> 
<form name = "sample"> 
Enter The name &nbsp;:  
<br> 
Enter Salary &nbsp; &nbsp &nbsp;&nbsp;: 
</body> 
</html> 

<INPUT> 
</INPUT> 

It is used for 
managing 
the input 
controls that 
will be 
placed 
within the 
tag.  
 
 

Name=“text”  It is 
used to name the 
field. 
Maxlength=number 
The maximum 
number of input 
characters allowed 
in the input control. 
Size=number  The 
width of the input 
control in pixels.  
type="(checkbox/ 
hidden/ radio /reset 
/submit /text 
/image)" 
value="default”  
value to be 
submitted with the 
form (for a 
checkbox or radio 
button); or label (for 
Reset or Submit 
buttons)" 
src="source file for 
an image",\  
checked indicates 

 
<body bgcolor = "pink"> 
<form name = "sample"> 
Enter The name :  
<input type = "text" name = "nm" width = 
30> 
<br> 
Enter Salary  &nbsp; &nbsp; &nbsp; : 
<input type = "text" name = "sal" width = 
10> 
<br> 
Gender &nbsp; &nbsp; 
&nbsp;&nbsp;&nbsp; &nbsp;&nbsp; 
&nbsp;::  
<input type = "radio" name = "gender" 
value = "male" checked> Male 
<input type = "radio" name ="gender” 
value = "female" > Female 
<br> 
</body> 
 



 65 

that checkbox or 
radio button is 
checked  
align="(texttop/ 
absmiddle 
/baseline /bottom,)" 

<SELECT> 
</SELECT> 

Defines and 
displays a 
set of 
optional list 
items from  
which the 
user can 
select one 
or more 
items. 

name=" (name to 
be passed to the 
script as part of 
name/value pair)"  
rows="no. of rows" 
cols="(no. of cols.)" 

<br> 
Age Between :  
<select name = "age" size = 1> 
</select> 
<br> 
 

<OPTION> indicates a 
possible 
item within a 
select 
widget 

selected=default 
selection 
value="data 
submitted if this 
option is selected" 

<select name = "age" size = 1> 
<option selected> 21-30 
<option> 31-40 
<option> 41-50 
<option> 51-60 
<option> 61-70 
</select> 

<TEXTAREA> 
</TEXTAREA> 

multiline text 
entry widget 

name=name of 
data field  
size=#of items to 
display. multiple 
allows multiple 
selections 

<br> 
Objectives 
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;:  
<textarea  rows = 10 columns = 15>  
</textarea> 

  

 
Type the sample HTML code given above and view the contents through a browser.  
 
 
 
 

 
Set A 
Write the HTML code for  generating  the form as shown below 
�  1. 

 
 

Signature of the instructor   
 

Date  
 

/       /           

Enter Your Name 

Enter Your Password 

Which of the following Operating System have you used? 

LINUX  Windows XP Macintosh 8.0 

Which Operating System do you like the best? 

LINUX  Windows XP Macintosh 8.0 

You have Completed the Form .     Submit 



 66 

�  2. 
 

 
 
�  3. 
 

 
 
 
 
 
 
 
Set B 
 
�  1. Design an html form to take the information of a student registering for the course such as 
the name,  address , gender , course( to be selected from a list of courses)  etc. One should 
provide button to Submit as well as Reset the form contents. 
 
�  2. Design an html form to take the information of a customer visiting a departmental store such 
as  name,  contact phone no , preferred days of purchasing , favourite item ( to be selected from a 
list of items), suggestions  etc. One should provide button to Submit as well as Reset the form 
contents. 
 
�  3. Design an html form to take the information of a customer booking a travel plan  such as  
name,  address, contact phone no , gender,  preffered season , location type( to be selected from 
a list)  etc. One should provide button to Submit as well as Reset the form contents. 
 

Signature of the instructor   
 

Date  
 

/       /           

Enter Name of your friend 

Choose the file you want to post to your friend 

Image  Source code Binary code 

What does the file contain? 

You have Completed the Form .     Submit Query 

Browse… 

Choose your favourite ice cream flavour 

How Many people would you like to serve? 

How would you like to have it? 

CUP  CONE  BAR  

To clear the contents click.     Reset 

Vanilla 
Pistachio 
 
Mango 
Santra Mantra 

Chocalate 
 

Tell Us something about your self 



 67 

�  4. Design an html form to take the information of a article to be uploaded  such as  file path, 
author name  , type (technical, literary, general), subject topic  ( to be selected from a list)  etc. 
One should provide button to Submit as well as Reset the form contents. 
 
 
 
 

 

 

Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  

 

Signature of the instructor   
 

Date  
 

/       /           



 68 

 
  

 
 
 
 
 

 
 

Lab Course I 
Section II  



 69 

 
Exercise 11   Start Date  

    

      /      / 
 

 

 
To create simple tables , with only the primary key constraint ( as a table level constraint & as a 
field level constraint) (include all data types) 

 
You should read following topics before starting this exercise 
1. Designing relations into tables 
2. Using DDL statements to create tables 

 
A table is a database object that holds data. A table must have unique name, via which it can be 
referred. A table is made up of columns. Each column in the table must be given a unique name 
within that table. Each column will also have size a data-type and an optional constraint.   
The data types permitted are 
  
Data type  Syntax  Description  Example  
Character data types char(n) It is fixed length 

character string of 
size n, default value 
1 byte if n is not 
specified. 

account_type char(6) 

varchar(n) It is variable length 
character string with 
maximum size n. 

employee_name 
varchar(50) 

Text It is used to store 
large text data, no 
need to define a 
maximum 

work_experience text 

Numeric data types Integer , int , serial Serial is same as int, 
only that values are 
incremented 
automatically  

Eno int 
Eno serial 

Numeric A real number with P 
digits, S of them after 
decimal point. 

Sal  numeric(5,2) 
Sal  numeric(n) 

Float Real number Weight Float  
Date and time type Date Stores  date 

information 
Birthdate date 

 Time Stores  time 
information 

Birthtime time 

 Timestamp Stores a date & time Birth timestamp 
Boolean and Binary 
type 

Boolean, bool Stores only 2 values : 
true or false, 1 or 0, 
yes or no, y or n, t or 
f 

Flag Boolean 

 
Constraints can be defined as either of the following : 
 
Name Description  Example  
Column level When data constraint is 

defined only with respect to 
one column & hence defined 
after the column definition, it 

Create tablename ( 
 attribute1 datatype primary  
key , attribute2 datatype  
constraint constraint-name  



 70 

is called as column level 
constraint 
 

,……) 
 

Table Level When data constraint spans 
across multiple columns & 
hence defined after defining 
all the table columns when 
creating or altering a table 
structure, it is called as table 
level constraint 
 

Create tablename ( attribute1 
datatype  , attribute2 
datatype2 ,……, constraint 
pkey primary 
key(attribute1,atrribute2)) 
 

  
 
Syntax for table creation : 

Create tablename ( attribute list); 
Attribute list : ( [ attribute name  data type   optional  constraint] , ……….. .) 

 
Primary key concept :  
Description  Properties  Example  
A primary key is made up of 
one or more columns  in a 
table, that  uniquely identify 
each row in the table.  
 

A column defined as a 
primary key, must conform to 
the following properties : 
a) The column cannot have 

NULL values.  
b) The data held across the 

column MUST be 
UNIQUE.  

 

Create tablename ( attribute1 
datatype primary key , attribute2 
datatype ,……) 
Create tablename ( attribute1 
datatype , attribute2 datatype 
,……, constraint pkey primary 
key(attribute1)) 
Create tablename ( attribute1 
datatype, attribute2 datatype 
,……, constraint 
constraint_name 
primarykey(attribute1,attribute2)) 
 

 
 

 
Steps to  Use DDL statements  

1. Login to linux server 
2. Type the connection string to connect to database  
   psql –h  IP address of server  -d  database-name  

      3. Type in the DDL statement at the sql> prompt     
 
�  1. Type \h  and go through the commands listed. 
�  2. Type \h command-name & read through the help data given for each  
            command. 
Type the following Create table Statements to create the tables . If the table creation is successful 
you get ‘create table’  as output.  
Then Type \d <table name>   and write the output 
 
�  3. Create table emp (eno integer primary key, ename varchar[50] , salary float); 
�  4. Create table books( id integer UNIQUE, title text NOT NULL, author_id integer,sub_id 
integer,CONSTRAINT books_id_pkey PRIMARY KEY(id)); 
�  5. Create table sales_order(order_no char[10] PRIMARY KEY, order_date date, salesman_no 
integer); 
�  6. Create table client_master(client_no integer CONSTRAINT   

 p_client PRIMARY KEY, name varchar[50], addr text, bal_due  
integer); 

�  7. Create table inventory(inv_no integer PRIMARY KEY,in_stock  
 Boolean); 



 71 

�  8. create table sales_order1(order_no char[10], product_no char[10],  ,  
  qty_ordered integer,product_rate numeric(8,2),PRIMARY  
  KEY(order_no,product_no)); 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 

 
Set A 
�  1. 
Create a table with details as given below  
Table Name PLAYER 
Columns Column Name  Column Data Type Constraints 
1 player_id Integer Primary key 
2 Name varchar (50)  
3 Birth_date date  
4 Birth_place varchar(100)  
Table level constraint  
 
�  2. 
Create a table with details as given below  
Table Name Student 
Columns Column Name  Column Data Type Constraints 
1 Roll_no integer  
2 Class varchar (20)  
3 Weight numeric (6,2)  
4 Height numeric (6,2)  
Table level constraint Roll_no and class as primary key 
 
�  3. 
Create a table with details as given below  
Table Name Project 
Columns Column Name  Column Data Type Constraints 
1 project_id integer Primary key 
2 Project_name varchar (20)  
3 Project_ 

description 
text  

4 Status boolean  
Table level constraint  
 
�  4. 
Create a table with details as given below  
Table Name Donor 
Columns Column Name  Column Data Type Constraints 
1 Donor_no integer Primary key 
2 Donor_name varchar (50)  
3 Blood_group Char(6)  
4 Last_date date  
Table level constraint  
 
Set B 
Create table for the information given below by choosing appropriate data types and also 
specifying proper primary key constraint on fields which are underlined 
�  1.  Property ( property_id, property_desc , area, rate, agri_status ) 
�  2.  Actor ( actor_id, Actor_name, birth_date )  



 72 

�  3. Movie(movie-no, name, release-year ) 
�  4. Hospital(hno,hname,hcity) 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set C 
Create table for the information given below by choosing appropriate data types and also 
specifying proper primary key constraint on fields which are underlined 
�  1. Table  ___________   (  __________, ____________ , ______, _______,  
       Primary key : ____________________ 
 
Instructor should fill in the blanks with appropriate values. 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 73 

 
Exercise 12   Start Date  

    

      /      / 
 

 

 
To create more than one table, with referential integrity constraint, PK constraint. 

 
You should read following topics before starting this exercise 
1. Referential Integrity constraints, relationship types (1-1,1-m,m-1,m-m) 
2. Handling relationships while converting relations into tables in RDB, so that there are no 
redundancies.   

 
The integrity constraints help us to enforce business rules on data in the database. Once an 
integrity constraint is specified for a table or a set of tables, all data in the table always conforms 
to the rule specified by the integrity constraint.  
 
Referential integrity constraints designates a column or grouping of columns  in a table called 
child table as a foreign key and establishes a relationship between that foreign key and specified 
primary key of another table called parent table. 
 
The following is the list of constraints that can be defined for enforcing the referential integrity 
constraint. 
 
Const raint  Use Syntax and Example  
Primary key Designates a column or 

combination of columns 
as primary key 

PRIMARY KEY 
(columnname[,columnname]) 
 

Foreign key designates a column or 
grouping of columns  as 
a foreign key with a 
table constraint 

FOREIGN KEY 
(columnname[,columnname]) 
 

References Identifies the primary  
key that is referenced 
by a foreign key. If only 
parent table name is 
specified it automatically 
references primary key 
of parent table 

columnname datatype REFERENCES 
tablename[(columnname[,columnname])   

On delete Cascade The referential integrity 
is maintained by 
automatically removing 
dependent foreign key 
values when primary 
key is deleted 

columnname datatype REFERENCES 
tablename[(columnname)][ON DELETE 
CASCADE] 

On update set null If set, makes the foreign 
key column NULL, 
whenever there is a 
change in the primary 
key value of the referred 
table 

Constraint name foreign key column-
name references referred-table(column-
name) on update set null 

 
Rules to Handle relationships , attributes , enhanced E-R concepts  during table creation : 
Name  Description  Handling  Example  Create 

statement 
One-to-one A member from The key Room & guest. Create table 



 74 

an entity set is 
connected to 
atmost one 
member from 
the other entity 
set & vice-versa 

attribute from 
anyone entity 
set goes to the 
other entity set 
(may be  the 
entity set that 
has full 
participation in 
relation) , as a 
foreign key. 

Room no is 
foreign key in 
guest 
relation.guest 
has full 
participation in 
relation. 

room( rno int 
primary key, 
desc char(30)); 
Create table 
guest(gno int, 
name 
varchar(20), rno 
int references 
room unique); 

One-to-many, 
many-to-one 

A member from 
the  entity set on 
the one side  is 
connected to 
one or more 
members from 
the other entity 
set, but a 
member from 
the entity set on 
the many side , 
is connected to 
atmost one 
member of the 
entity set on one 
side. 

The key 
attribute of the 
entity set on one 
side is put as 
foreign key in 
the entity set on 
the many side. 

Department & 
employee. Here 
department is 
on the one side 
& employee is 
on the many 
side. 

Create table 
dept(dno int 
primary key, 
dname char(20); 
Create table 
emp(eno int 
primary key, 
name char(30), 
dno int 
references dept); 

May-to-many A member from 
one entity set 
connected to 
one or more 
members of the 
other entity set 
& vice-versa 

A new relation is 
created that will 
contain the key 
attributes of 
both the 
participating 
entity sets. 

Student & 
subject . a 
student can opt 
for many 
subjects & a 
subject has 
many students 
opting for it. 

Create table 
student(sno int 
primary key, 
name 
varchar(20); 
Create table 
subject(sbno int 
primary key, 
name 
varchar(20)); 
Create table st-
sub(sno int  
references 
student, sbno int 
references 
subject, 
constraint pkey 
primary 
key(sno,sbno)); 

A multivalued 
attribute 

an attribute 
having multiple 
values for each 
member of the 
entity set 

A new relation is 
created , which 
will contain a 
place holder for 
the multivalued 
attribute  and 
the key 
attributes of the 
entity set that 
contains the 
multivalued 
attribute 

An employee 
having multiple 
contact 
numbers, like 
home phone, 
mobile number, 
office number 
etc. hence the 
phone-no 
attribute in 
employee 
relation 
becomes a 
multivalued 
attribute. 

Create table 
emp(eno int 
primary key, 
name char(30)); 
Create table 
emp-ph(eno int 
references emp, 
phno int , 
constraint pkey 
primary 
key(eno,phno)); 



 75 

A multivalued, 
composite 
attribute  

A composite 
attribute having 
multiple values , 
for each 
member of the 
entity set 

A new relation is 
created, which 
will contain a 
place holder for 
each part of the 
composite 
attribute and the 
key attributes of 
the entity set 
that contains the 
composite 
multivalued 
attribute 

An employee 
having multiple 
addresses , 
where each 
address is made 
up of a block no, 
street no, city, 
state. Hence the 
address 
attribute 
becomes a 
composite 
multivalued 
attribute. 

Create table 
emp(eno int 
primary key, 
name char(30)); 
Create table 
emp-add(eno int 
references emp, 
addno int, hno 
int, street 
char(20), city 
char(20), 
constraint pkey 
primary 
key(eno,addno)); 

Generalization / 
specialization 

The members of 
an entity set can 
be grouped into 
several 
subgroups, 
based on an 
attribute/s 
vaue/s. 
 Each subgroup 
becomes an 
entity set. 
Depicts a 
parent-child type 
of relationship. 

New relations 
for each 
subgroup , if the 
subgroups have 
its own 
attributes, other 
than the parent 
attributes. The 
parent entity 
set’s key is 
added to each 
subgroup. 
If no specific 
attributes for 
each subgroup, 
then only the 
parent relation is 
created. 

A person ( 
parent entity 
set) can be an 
employee, a 
student, a 
retired person. 
Here employee 
has its own set 
of attributes like 
company, salary 
etc. a student 
has its won set 
of attributes like 
college/ school, 
course etc. a 
retired person 
has its own set 
of attributes like 
hobby, pension 
etc. so we 
create a person 
relation , a 
student relation, 
an employee, a 
retire person. 
The student , 
employee, 
retired person 
entity sets will 
have the key of  
the person entity 
set added to it. 

Create table 
person(ssno int 
primary key, 
name char(30)); 
Create table 
emp(ssno int 
references 
person, eno int, 
cname char(20), 
sal float, primary 
key(ssno)); 
Create table 
student(ssno int 
references 
person, class 
char(10), school 
varchar(50), 
primary 
key(ssno)); 

 

 

 
You can type the following Create table Statements to create the tables satisfying referential 
integrity constraints. On table creation type \d <table name>   and write the output. 
 
�  1. Consider two tables department & employee. One department can have one or more 
employees, but an employee belongs to exactly one department ( 1-m relation). It’s pictorially 
shown as follows : 
 
 
 

department employee has 



 76 

 
 
To handle the above relation, while creating the tables, ‘deptno’ is a foreign key in the employee 
table. The statement for creating the tables are as follows : 
 
Create table department ( deptno integer primary key, deptname text); 
Create table employee( empno integer primary key, ename varchar(50), salary float, dno integer 
references department(deptno)  on delete cascade on update set null); 
 
 
�  2. Consider the department table created above &  another  table called project.  A project is 
controlled by exactly one department , but a department can control one or more  projects( a m-1 
relation). It’s pictorially shown as follows : 

 
 
 
  
To handle the above relationship, control-dno is a foreign key in project. The statement for 
creating the project table is  as follows :  
Create table project(pno int primary key, pname char(10), control-dno int, 
foreign key(control-dno)   references department(dno)) 
 
� 3. Consider the project & employee relations created above. An employee can work in one or 
more projects, and a project can have one or more employees working in it .( a m-m relation). It’s 
shown pictorially as follows : 
  
 
 

 
To handle the above relationship, we create a new table , works-on , as given below : 
 
create table works(eno int  references employee, pno int  references project, hrs int, constraint 
pkey primary key(eno,pno)) 
�  4. Consider the relations guest and room. A guest is allocated exactly one room, and a room 
can contain exactly one guest in it. ( a 1-1 relation). It’s pictorially shown as follows : 
 
 
 
 
 
To handle the above relation, we add room-no as foreign key to guest, since a guest cannot be 
without being allocated to a room ( guest has full participation in relation). The statements for 
creating these relations are as follows 
Create table room(room-no integer primary key , description char(20, charge integer); 
Create table guest(guest-no integer primary key, name varchar(30), room-no references room 
unique); 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 

project department
tt 

project Works
-on 

employee 

Control 
by 

hrs 

room guest allot 



 77 

 
 
Set A 
Create tables for the information given below by giving appropriate integrity constraints as 
specified. 
�  1.  Create the following tables : 
Table Name Property 
Columns Column Name  Column Data Type Constraints 
1 Pnumber  Integer Primary key 
2 description varchar (50) Not null 
3 Area Char(10)  
 
Table Name Owner 
Columns Column Name  Column Data Type Constraints 
1 Owner-name Varchar(50) Primary key 
2 Address varchar (50)  
3 Phoneno Integer  
 
Relationship � A one-many relationship between owner & property. Define reference keys 
accordingly . 
 
�  2.  Create the following tables : 
Table Name Hospital  
Columns Column Name  Column Data Type Constraints 
1 Hno  Integer Primary key 
2 Name varchar (50) Not null 
3 City Char(10)  
 
Table Name Doctor 
Columns Column Name  Column Data Type Constraints 
1 Dno Integer Primary key 
2 Dname varchar (50)  
3 City Char(10)  
 
Relationship � A many-many relationship between hospital & doctor.  
  
�  3. Create the following tables : 
Table Name Patient 
Columns Column Name  Column Data Type Constraints 
1 pno  Integer Primary key 
2 Name varchar (50) Not null 
3 Address Varchar(50)  
 
Table Name   Bed  
Columns Column Name  Column Data Type Constraints 
1 Bedno integer Primary key 
2 Roomno integer Primary key 
3 description Varchar(50)  
 
Relationship � a one–to-one relationship between patient & bed. 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 
 



 78 

 Set B 
Create table for the information given below by choosing appropriate data types and integrity 
constraints as specified. 
�  1. Table _____________(______, __________, ________, ___________  

    _____________(______, __________, ________, ___________ 
 Constraints: ____________, _____________________ 
 
�  2. Table _____________(______, __________, ________, ___________  

    _____________(______, __________, ________, ___________ 
 Constraints: ____________, _____________________ 
 
Relationship �_____________________________________________________ 
 
Instructor should fill in the blanks with appropriate values. 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 79 

 
Exercise 13   Start Date  

    

      /      / 
 

 
 

 
To create  one or more tables with Check constraint , Unique constraint, Not null constraint 
, in addition to the first two constraints (PK & FK) 

 
You should read following topics before starting this exercise 
1. Different integrity constraints  
2.  Specification of different integrity constraints , in create table statement . 
 

 
The following is the list of additional integrity constraints. 
Constraint Use Syntax and Example 
NULL Specifies that the column can 

contain null values 
CREATE TABLE 
client_master 
(client_no text NOT NULL , 
name text NOT NULL, 
addr text NULL ,  
bal_due integer)); 
 

NOT NULL Specifies that the column can 
not contain null values 

CREATE TABLE 
client_master 
(client_no text NOT NULL , 
name text NOT NULL, 
addr text NOT NULL ,  
bal_due integer)); 
 

UNIQUE Forces the column to have 
unique values 

CREATE TABLE 
client_master 
(client_no text UNIQUE, 
name text ,addr text, bal_due 
integer)); 
 

CHECK Specifies a condition that 
each row in the table must 
satisfy. Condition is specified 
as a logical expression that 
evaluates either TRUE or 
FALSE. 

CREATE TABLE 
client_master 
(client_no text 
CHECK(client_no like ’C%’), 
name text 
CHECK(name=upper(name)), 
addr text)); 
 

 
 

 
�  1. create client master by using any one DDL statement given above. On table creation type \d 
<table name>   and write the output  
 

Signature of the instructor   
 

Date  
 

/       /           

 



 80 

 

 
Set A 
�  1. 
Create a table with details as given below  
Table Name Machine 
Columns Column Name  Column Data Type Constraints 
1 Machine_id integer Primary key 
2 Machine_name varchar (50) NOT NULL, uppercase 
3 Machine_type varchar(10) Type in ( ‘drilling’, ‘milling’, 

‘lathe’, ‘turning’, ‘grinding’) 
4 Machine_price float Greater than zero 
5 Machine_cost float  
Table level constraint Machine_cost  less than Machine_price 
 
�  2. 
Create a table with details as given below  
Table Name Employee 
Columns Column Name  Column Data Type Constraints 
1 Employee_id integer Primary key 
2 Employee_name varchar (50) NOT NULL, uppercase 
3 Employee_desg varchar(10) Designation in ( ‘Manager’, 

‘staff’, ‘worker’) 
4 Employee_sal float Greater than zero 
5 Employee_uid text Unique 
Table level constraint Employee_uid not equal to  Employee_id 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 
Set B 
�  1. 
Create a table with details as given below  
Table Name  
Columns Column Name  Column Data Type Constraints 
1    
2    
3    
4    
5    
Table level constraint  
 
Instructor should fill in the blanks with appropriate values. 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 81 

 
Exercise 14   Start Date  

    

      /      / 
 

 

 
To drop  a table from the database, to alter the schema of a table in the  
Database. 

 
You should read following topics before starting this exercise 
1 Read through the drop, Alter DDL statement 

 
The Drop & Alter DDL  statements : 
Name  Description  Syntax  Example  
Drop  Deletes an object 

(table/view/constraint) 
schema from the database 

Drop object-type 
object-name; 

Drop table 
employee; 
Drop table sales; 
Drop constraint 
pkey; 

Alter ALTER TABLE command 
of SQL is used to modify 
the structure of the table  
 It can be used for 
following purposes 
a) adding new column 
b) modifying existing 
columns 
c) add an integrity 
constraint 
d) To redefine a column 
 
Restrictions on the alter 
table are that, the  
following tasks cannot be 
performed with this clause 
a) Change the name of the 
column 
b) Drop a column  
c) Decrease the size of a 
column if table data exists 
 
 

Alter table 
tablename Add ( 
new columnname 
datatype(size), new 
columnname 
datatype(size)…); 
 
Alter table 
tablename  modify 
(columnname new 
datatype(new 
size),..); 
 

Alter  table emp( 
 add  primary key 
(eno)); 
alter table 
student( add 
constraint city-
chk check city in 
(‘pune’, 
‘mumbai’)); 
 
alter table 
student modify 
(city 
varchar(100)); 

 

 
Create  the  table given below . Assume appropriate data types for attributes. 
Modify the table, as per the alter statements given below, type \d <table name>   
and write the output.  
 Supplier_master( supplier_no, supplier_name,city,phone-no,amount) 
 
 � 1. Alter  table supplier_master 
       add  primary key (supplier_no); 
�  2. Alter table supplier_master add constraint city-check check city in(‘pune’, ‘mumbai’, 
‘calcutta’);  
�  3.alter table supplier_master drop phone-no; 



 82 

�  4.alter table supplier_master modify (supplier_name varchar(50)); 
� 5. alter table supplier_master drop constraint city-check; 
� 6. drop table supplier_master; 
 

Signature of the instructor   
 

Date  
 

/       /           

 

 
Set A 
�  1. Remove employee table from your database. Create table employee( eno, ename, sal). Add 
designation column in the employee table with values restricted to a set of values. 
�  2. Remove student  table from your database. Create table student( student_no, sname, 
date_of_birth). Add new column into student relation named address as a text data type with NOT 
NULL integrity constraint and a column phone of data type integer. 
�  3. Consider the project relation created in the  assignment 12. Add a constraint that the project 
name should always start with the letter ‘R’ 
�  4.Consider the relation hospital created in assignment 12. Add a column hbudget of type int  , 
with the constraint that budget of any hospital should always > 50000. 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 
Set B 
�  1. Remove ____________ table from your database. Create table _____( __________, 
______, _________). Add ___________ _________________________ ____________ 
_____________________ 
 
Instructor should fill in the blanks with appropriate values. 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 83 

 
Exercise 15   Start Date  

    

      /      / 
 

 
 

 
To insert / update / delete records using tables created in  previous  

Assignments. ( use simple forms of insert / update / delete statements) 

 
You should read following topics before starting this exercise 
1. Read through the insert , update, delete statement.  
2. Go through the variations in syntaxes of the above statements. 
3. Go through some examples of these statements 
4. Go through the relationship types & conversion of relations to tables in RDB. 
5. Normal forms � 1NF, 2NF, 3NF 

 
 
The insert / update / delete statements 
Name Description  Syntax  Example  
Insert  The insert statement 

is used to insert 
tuples or records  
into a created table 
or a relation. 
 
We specify a list of 
comma-separated  
column values, 
which must be in the 
same order as the 
columns in the table. 
 
To insert character 
data we must 
enclose it in single 
quotes(‘). If a single 
quote is part of the 
string value to be 
inserted , then 
precede it with a 
backslash(\). 
 
When we don’t have 
values for every 
column in the table, 
or the data given in 
insert is not in the 
same column order 
as in the table, then 
we specify the 
column names also 
alongwith the values 
(2nd syntax) 
 

INSERT INTO 
tablename   
VALUES (list of 
column values); 
 
 
INSERT INTO 
tablename(list 
of column 
names)    
VALUES (list of 
column values   
  corresponding 
to the column 
names ); 
 
 

Insert into emp 
values(1,’joshi’,4000,’pune); 
 
 
 
Insert into emp(eno,city) 
values(2,’mumbai’); 



 84 

Update  The UPDATE 
command is used to 
change or modify 
data values in a 
table.  
To specify update of 
several columns at 
the same time, we 
simply specify them 
as a comma-
separated list 
 

UPDATE 
tablename 
                           
SET 
columnname =  
value where 
condition; 
 

Update emp set sal = sal 
+0.5*sal; 
 
Update emp set sal = sal+1000 
where eno =1; 

Delete The DELETE 
statement   is used 
to remove data from 
tables. 
 

DELETE FROM 
table name 
where 
condition;  
 

Delete  from emp ; 
 
Delete from emp where eno = 1; 

 

 
Consider the tables created in assignments 11,12,13,14. type and execute the below statements 
for these tables. Write the output of each statement & justify your answer 
�  1.  INSERT INTO sales_order(s_order_no,s_order_date,client_no) 
VALUES (‘A2100’, now() ,’C40014’); 
�  2.  INSERT INTO client_master values(‘A2100’,’NAVEEN’,’Natraj apt’,’pune_nagar 
road’,’pune’,40014); 
�  3. insert  into client_master values (‘A2100’,’NAVEEN’,NULL,’pune_nagar road’,’pune’,40014); 
�  4. UPDATE emp SET netsal= net_sal_basic_sal*0.15; 
�  5. UPDATE student 
            SET name=’SONALI’,address=’Jayraj apartment’ 
             WHERE stud_id=104 ; 
�  6. DELETE from emp; 
�  7.DELETE from emp 

WHERE  net_sal <1000; 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 

 
Set A  
�  1.  Create the following tables ( primary keys are underlined.).  
        Property(pno,description, area) 
        Owner(oname,address,phone) 
An owner can have one or more properties, but a property belongs to exactly one owner . Create 
the relations accordingly ,so that the relationship is handled properly and the relations are in 
normalized form (3NF). 
a) Insert two records into  owner table. 
b) insert 2 property records for each owner . 
c) Update phone no of “Mr. Nene” to 9890278008 
d) Delete all properties from “pune” owned by “ Mr. Joshi” 
 
�  2 . Create the following tables ( primary keys are underlined.).  
       Emp(eno,ename,designation,sal)   
       Dept(dno,dname,dloc) 
There exists a one-to-many relationship between emp & dept. 



 85 

Create the Relations accordingly, so that the relationship is handled properly and the relations are 
in normalized form (3NF). 
a) Insert  5 records into department table  
b) Insert 2 employee records for each department. 
c) increase salary of  “managers” by 15%; 
d) delete all employees  of  deparment 30; 
e) delete all employees  who are working as a “clerk” 
f) change location  of department  20 to ‘KOLKATA’ 
 
�  3 . Create the following tables ( primary keys are underlined.).  
      Sales_order(s_order_no,s_order_date) 
      Client(client_no, name, address) 
A clinet can give one or more sales_orders , but a sales_order belongs to exactly one client. 
Create the Relations accordingly, so that the relationship is handled properly and the relations are 
in normalized form (3NF). 
a) insert 2 client records into client table 
b) insert 3 sales records for each client 
c) change order date of client_no  ’C004’ to 12/4/08 
d) delete all sale  records having order date before 10th feb. 08 
e) delete the record of client  “joshi” 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set B  
�  1. Design a set of   tables with the following constraints. Add any new attributes , as required by 
the queries.  
      Table name :  

Field name Data Type  Constraints 
   
   
   
   

  
     Table name :  

Field name Data Type  Constraints 
   
   
   
   

 
Relationship � ___________________________________________ 

             Write & execute insert/ update / delete   statements  for following business tasks 
              a) 
               

 b) 
               
              c) 
               
              d) 
   
              e) 
              
              f)  
 
Instructor should fill in the blanks with appropriate values. 
 

Signature of the instructor   
 

Date  
 

/       /           



 86 

Set C  
Create an appropriate set of tables in normalized form to keep some business information. 
Populate the tables with information for the business process.  State the updations that can be 
done to the data in the table .Write and execute update / delete statements  for the same. The 
names of tables & fields should be self-explanatory ( i.e . their names should depict the kind of 
data being stored. ) 
 

 
Signature of the instructor   

 
Date  

 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done        2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 87 

 
Exercise 16   Start Date  

    

      /      / 
 

 

 
To understand & get a Hands-on on Select  statement 

 
You should read following topics before starting this exercise  
1. Creating relations as tables and inserting tuples as records into the table. 
2. The use of select statement in extracting information from the relation.  
3. Insert/update/delete with subquery. 
4. Relationship types & their conversion to RDB.  
5. Normal forms � 1NF, 2NF, 3NF. 
 

 
The select statement : 
Name  Description  Syntax  Example  
Select statement Used to read a tuple, 

tuples, parts of a tuple 
from a relation in the 
database. Tuple means a 
record in an RDB & a 
relation means a table. 
 
The basic structure of a 
Select statement 
consists of 3 clauses : 
The select clause  � 
corresponds to the 
projection operation in 
relational algebra.  It is 
used to list the attributes 
desired in the query. 
The from clause  � 
corresponds to the 
Cartesian product 
operation of RA. It lists 
the  relations to be 
scanned in the 
evaluation of the 
expression. 
The where clause  � 
corresponds to the 
selection operation of 
RA. It consists of a 
predicate  involving the 
attributes of the relations 
that appear in the select 
clause. 
 
The other clauses 
are : 
 
Order by clause  � 
causes the result of the 

select <attribute-
list> from <relation-
list> [where 
<condition> [group 
by <attribute list>   
[having <condition> 
] order by <attribute 
list>]]; 
 

Select * from emp; 
Select eno,name 
from emp; 
Select eno name 
from emp where 
sal > 4000 order by 
eno; 
Select sum(sal) 
from emp group by 
dno having 
sum(sal)> 100000; 
 



 88 

query to appear in a 
sorted order. 
 
Group by clause  � 
used to form groups of 
tuples , of  the result . It 
is used when using 
aggregate functions. 
 
Having clause ���� 
Used  with group by 
clause, to force a 
condition on the groups  
formed after applying 
group by clause, & 
selects only those groups 
in the output that satisfy 
the condition.  
 
The order of execution of 
the clauses is the same 
as given in the syntax. 

 
The aggregate functions  supported by SQL are as follows: 
 
Name Description  Usage Example  
Sum() Gets the sum or total 

of the values of the 
specified attribute. 

Sum(attribute-name) Select sum(sal) from 
emp; 
Select dno, sum(sal) 
from emp group by 
dno;  

Count() Gives the count of 
members in the 
group 

Count(attribute); 
Count(*) 

Select count(*) from 
emp; 
Select count(*) from 
emp where sal > 
5000; 

Max() Gives the maximum 
value for an attribute, 
from a group of 
members 

Max(attribute) Select max(sal) from 
emp; 
Select dno, max(sal) 
from emp group by 
dno having count(*) 
>10; 

Min() Gives the minimum 
value for an attribute, 
from a group of 
members 

Min(attribute) Select min(sal) from 
emp; 
Select dno, min(sal) 
from emp group by 
dno having min(sal) 
>100; 

Avg() Gives the average 
value for an attribute, 
from a group of 
members 

Avg(attribute) Select avg(sal) from 
emp; 
Select dno, avg(sal) 
from emp group by 
dno having count(*) 
>10; 

 

 



 89 

As part of the self activity in exercise    you have created a table employee with attributes empno, 
name, address, salary and deptno. You have also inserted atleast 10 records into the same.  
To execute each query  
         type each query into the database prompt  or 
         type queries in a file and cut and copy each query at the database prompt or 
         type queries in a file and type \i filename at SQL prompt. ( all queries in the file will get 
executed  one by one).                    
 
Execute following select queries & write the business task performed by each query. 
�  1. Select * from emp; 
�  2. Select empno, name from emp; 
�  3. Select distinct deptno from emp; 
�  4. Select * from emp where deptno = ___; 
�  5. Select * from emp where address = ‘pune’ and sal > _____; 
�  6. Select * from emp where address = ‘pune and salary between _____ and _____; 
�  7. Select * from emp where  name like ‘---%’ 
�  8. Select * from emp where name like ‘%and%’ 
�  9. Select * from emp where salary is null; 
�  10. Select * from emp order by eno; 
�  11. Select * from emp order by deptno, eno desc; 
�  12. Select  deptno  as department, sum(salary) as total from emp group by deptno order by 
deptno; 
� 13. Select deptno as department , count(eno) as total_emp  from emp group by deptno having 
count(eno ) > _____ order by deptno; 
� 14. select avg(salary) from emp; 
� 15. select max(salary),deptno  from emp group by deptno having max(sal) > __________; 
� 16. select deptno, min(salary) from emp order by deptno; 
� 17. update emp set salary = salary + 0.5*salary where deptno = (select deptno from department 
where dname = ‘finance’); 
� 18. update emp set deptno = (select deptno from department where dname = ‘finance’) 
      Where deptno = (select deptno from department where dname = ‘inventory’); 
� 19. insert into emp_backup(eno,ename) values(select eno,ename from emp); 
� 20. delete from emp where deptno = (select deptno from department where 
dname=’production’); 
 

Signature of the instructor   
 

Date  
 

/       /           

 

 
Set A  
Consider  the relations Person (pnumber, pname, birthdate, income), Area( aname,area_type).  
An area can have one or more person living in it , but a person belongs to exactly one area. The 
attribute ‘area_type’ can have values as either urban or rural. 
Create the Relations accordingly, so that the relationship is handled properly and the relations are 
in normalized form (3NF). 
 Assume appropriate data types for all the attributes. Add any new attributes as required, 
depending on the queries. Insert sufficient number of records in the relations / tables with 
appropriate values as suggested by some of the queries.    
Write select queries for following business tasks and execute them. 
 
�  1. List the names of all people living in ‘______’ area. 
�  2. List details of all people whose names start with the alphabet ‘_’ & contains maximum _ 
alphabets in it. 
�  3. List the names of all people whose birthday falls in the month of ______.  
�  4. Give the count of people who are born on ‘_______’ 
�  5. Give the count of people whose income is below ______. 
�  6. List names of all people whose income is between _____ and _____; 



 90 

�  7. List the names of people with average income  
�  8. List the sum of incomes of people living in ‘____’  
�  9. List the names of the areas having people with maximum income (duplicate areas must be 
omitted in the result) 
�  10. Give the count of people in each area  
�  11. List the details of people living in ‘____’ and having income greater than _____; 
�  12. List the details pf people, sorted by person number  
�  13. List the details of people, sorted by area, person name 
�  14. List the minimum income of people. 
� 15. Transfer all people living in ‘pune’  to  ‘mumbai’.  
� 16. delete information of all people staying in ‘urban’ area  
 
Instructor should fill in the blanks with appropriate values. 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set B  
�  1. Design a  table with the following constraints. Add any new attributes , as required by the 
queries.  
      Table name :  

Field name Data Type  Constraints 
   
   
   
   
   

Insert sufficient number of records in the relations / tables with appropriate values as 
suggested by some of the queries.    

             Write & execute select  queries for following business tasks 
              a) 
               

 b) 
               
              c) 
               
              d) 
   
              e) 
      
 Instructor should fill in the blanks with appropriate values. 
             

Signature of the instructor   
 

Date  
 

/       /           

 
Set C 
Create an appropriate table to keep some business information. Populate the table with 
information for the business process. State the business tasks that you need to perform to extract 
information. Write and execute queries for the same. The names of tables & fields should be self-
explanatory ( i.e. their names should depict the kind of data being stored. ) 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 91 

 
Exercise 17   Start Date  

    

      /      / 
 

 

 
To understand & get a Hands-on on using set operations (union ,intersect and except) with select 
statement. 

 
You should read following topics before starting this exercise 
1. Relation algebra operation  ∩ , ∪ and - . 
2. SQL operations union, intersect & except 

 
SQL Set operations : 
 
Name description  Syntax  Example  
Union Returns the union of 

two sets of values, 
eliminating 
duplicates. 

<select query> 
       Union 
<select query> 

Select cname from 
depositor 
    Union 
Select cname from 
borrower; 

Union all Returns the union of 
two sets of values, 
retaining all 
duplicates. 

<select query> 
       Union all 
<select query> 

Select cname from 
depositor 
    Union all 
Select cname from 
borrower; 

Intersect  Returns the 
intersection of two 
sets of values, 
eliminating duplicates 

<select query> 
       intersect 
<select query> 

Select cname from 
depositor 
    intersect 
Select cname from 
borrower; 

Intersect all Returns the 
intersection of two 
sets of values, 
retaining duplicates 

<select query> 
       Intersect all 
<select query> 

Select cname from 
depositor 
    Intersect all 
Select cname from 
borrower; 

except Returns the 
difference between 
two set of values, I.e 
returns all values 
from set1 , not 
contained in set2 
.eliminates duplicates 

<select query> 
     except 
<select query> 

Select cname from 
depositor 
    except 
Select cname from 
borrower; 

Except all Returns the 
difference between 
two set of values, i.e. 
returns all values 
from set1 , not 
contained in set2 
.Retains all  
duplicates 

<select query> 
     Except all 
<select query> 

Select cname from 
depositor 
    Except all 
Select cname from 
borrower; 

 
The relations participating in the SQL operations union, intersect & except must be compatible i.e. 
the following two conditions must hold : 
      a)The relation r and s must be of the same arity. That is , they must have the same number of 
attributes. 



 92 

     b) The domains of the ith attribute of r and the ith attribute of s must be the same , for all i. 
 
Consider  the following relations, non-teaching, teaching, department. 
One  deparment can have one or more teaching & non-teaching staff, but a teaching or non-
teaching staff belongs to exactly one department. Hence dno is a foreign key in the both the 
relations. Create these relations in your database . 
 
Non-teaching ( empno int  primary key, name varchar(20), address varchar(20), salary int,dno 
references department) 
Teaching(empno int primary key, name varchar(20), address varchar(20), salary int,dno 
references department) 
Department(dno int primary key,dname) 

• insert at least 10 records into  both the relations. 
• type the following select queries & write the output and the business task performed by 

each query 
�  1.  Select empno  from non-teaching   union select empno from teaching; 
�  2.  Select empno from non-teaching  union all select empno from teaching; 
�  3.  Select name  from non-teaching intersect select name from teaching; 
�  4. Select name from non-teaching intersect all select name from teaching; 
�  5. Select name from non-teaching except select name from teaching; 
�  6. Select name from non-teaching except all select name from teaching; 
 

Signature of the instructor   
 

Date  
 

/       /           

 

 
Set A 
Create the following relations, for an investment firm 
                      emp( emp-id ,emp-name, address, bdate) 
                      Investor(  inv-name , inv-no, inv-date,  inv-amt) 
An employee may  invest in one or more investments, hence he can be an investor.  
But  an investor need not be an employee of the firm. 
Create the Relations accordingly, so that the relationship is handled properly and the relations are 
in normalized form (3NF). 
Assume appropriate data types for the  attributes. Add any new attributes , as required by the 
queries. Insert sufficient number of records in the relations / tables with appropriate values as 
suggested by some of the queries.    
 
Write the following queries & execute them. 
�  1. List the distinct names of customers  who are either employees, or investors or both. 
�  2. List the names of customers who are either employees , or investors or both.  
�  3. List the names of emloyees who are also investors. 
�  4. List the names of employees who are not investors. 
  

Signature of the instructor   
 

Date  
 

/       /           

 
Set B  
�  1. Design following two  tables with the following constraints . Add any new attributes, as 
required by the queries.  
        Table name  1:  

Field name Data Type  Constraints 
   
   
   
   
   



 93 

 
Table name  2:  

Field name Data Type  Constraints 
   
   
   
   
   
   

 
Relationship � ______________________________________________ 
 
Insert sufficient number of records in the relations / tables with appropriate values as 
suggested by some of the queries.    

             Write & execute queries for following business tasks 
              a) 
               

 b) 
               
              c) 
               
              d) 
   
              e) 
              
              f)  
 
Instructor should fill in the blanks with appropriate values. 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 
Set C  
Create two compatible tables having similar set of attributes, to keep some business information. 
Populate the tables with information for the business process. State the business tasks that you 
need to perform on these tables involving information from both the tables. Write and execute 
queries for the same. The names of tables & fields should be self-explanatory ( i.e. their names  
should depict the kind of data being stored. ) 
 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 94 

 
Exercise 18   Start Date  

    

      /      / 
 

 
 

 
To understand & get a Hands-on on  nested queries  & subqueries, that involves joining of tables. 

 
You should read following topics before starting this exercise 
1. Nesting of SQL queries and subqueries 
2. SQL statements involving  set membership, set comparisons and  set cardinality operations.  
3. Descriptive attributes & how they are handled while creating RDB. 

 
A subquery is a select-from-where expression that is nested within another query. 
Set membership the ‘in’ & ‘not in’  connectivity tests for set membership &  absence 

of set membership respectively. 
 

Set comparison the < some, > some, <= some, >= some, = some, <> some are the 
constructs allowed for  comparison. = some is same as the ‘in’ 
connectivity. <> some is not the same as the ‘not in’ connectivity.  
Similarly sql also provides < all, >all, <=all, >= all, <> all 
comparisons. <>all is same as the ‘not in’ construct. 

Set cardinality The ‘exists’ construct returns the value true if the argument 
subquery is nonempty. We can test for the non-existence of tuples 
in a subquery by using the ‘not exists’ construct. The ‘not exists ‘ 
construct can also be used to simulate the set containment 
operation (the super set ). We can write “relation A contains relation 
B” as “not exists (B except A)”. 

The complete Syntax of select statement containing connectivity or Comparison operators is as 
follows 
 select <attribute-list> from <relation-list>  
                where  <connectivity / comparison > { sub-query }; 

 
Create the following relation in your database(primary keys underlined) 

Employee(ename, street, city) 
Works(ename, company-name, salary) 
Company(company-name, city) 
Manages(ename, manager-name )     

An employee can work in one or more companies, a company can have one or more employees 
working in it. Hence the relation ‘works’ with key attributes as ename, 
company-name.  
An employee manages one or more employees, but an employee is managed by exactly one 
employee ( a recursive relationship), hence the relation ‘manages’ with key ename. 
Insert  sufficient number of records in the relations / tables with appropriate values as suggested 
by some of the queries.    
Type the following queries , execute them and give the business task performed by each query 
�  1. select ename from works w where salary >= all (select max(salary) from works)); 
�  2. select ename form works w where salary = (select max(salary) from works w1 where 
w1.company-name = w.company-name)); 
�  3. select manager-name  from manages where manager-name in(select ename from works 
where company-name = “______”); 
�  4. select manager-name  from manages where manager-name not in(select ename from works 
where company-name = “________”); 



 95 

�  5. select ename from works w where salary > some (select salary from works where company-
name not in (select company-name from company where city = “____”)); 
�  6. select ename  from employee e where city = ( select city from employee e1 , manages m 
where m.ename = e.ename and  m.manager-name = e1.ename); 
�  7. select * from employee where ename in (select manager-name from manages ) 
�  8. select city count(*) from employee group by city having count(*) >= all (select count(*) from 
employee group by city) 
�  9. select ename from works w where salary <> all (select salary from works where ename <> 
w.ename); 
�  10. select company-name, sum(salary) from works w group by company-name having sum(sal) 
>= all ( select sum(sal) from works group by company-name) 
�  11. select ename from employee e where city in(‘_____’,’______’); 
�  12. select ename from employee e where city = (select city from company c,  works w  where 
w.ename = e.name and c.company-name = w.company-name); 
 
Instructor should fill in the blanks with appropriate values. 
 

Signature of the instructor   
 

Date  
 

/       /           

 

 
Set A 
Create the following relations : 
                Emp(eno,name,dno,salary) 
                Project(pno,pname,control-dno,budget) 
 Each employee can work on one or more projects, and a project can have many employees 
working in it. The number of hours worked on each project , by an employee also needs to be 
stored. 
Create the Relations accordingly, so that the relationship is handled properly and the relations are 
in normalized form (3NF). 
Assume appropriate data types for the attributes. Add any new attributes , new relations as 
required by the queries.  
Insert sufficient number of records in the relations / tables with appropriate values as suggested 
by some of the queries.    
Write the queries for following business tasks & execute them. 
�  1. list the names of departments that controls projects whose budget is greater than ___. 
�  2. list the names of projects, controlled by department No __,   whose budget is greater than 
atleast  one project controlled by department No __. 
�  3. list the details of  the projects with second maximum budget 
�  4. list the details of the projects with third maximum budget. 
�  5. list the names of employees, working on some projects that employee number __ is working. 
�  6. list the names of employees who do not work on any project that employee number __ works 
on 
�  7. list the names of employees who do not work on any project controlled by ‘______’ 
department 
�  8. list the names of projects along with the controlling department name, for those projects 
which has atleast __ employees working on it. 
�  9. list the names of employees who is worked for more than 10 hrs on atleast one project 
controlled by ‘______’ dept. 
�  10. list the names of employees , who are males , and earning the maximum salary in their 
department. 
�  11. list the names of employees who work in the same department as ‘_____’. 
�  12. list the names of employees who do not live in _____ or _______. 
Instructor should fill in the blanks with appropriate values. 
 

Signature of the instructor   
 

Date  
 

/       /           



 96 

Set B  
�  1. Design a   set of tables with the following constraints. Add any new attributes , as required by 
the queries.  
      Table name :  

Field name Data Type  Constraints 
   
   
   
   

 
        Table name :  

Field name Data Type  Constraints 
   
   
   
   

       
         Table name :  

Field name Data Type  Constraints 
   
   
   
   

 
Relationship � _______________________________________________ 
Insert sufficient number of records in the relations / tables with appropriate values as 
suggested by some of the queries.    
Write & execute  queries for following business tasks. ( business tasks  should be using  
set operations &  should be similar to the ones given in set A ) 

 
              a) 
               

 b) 
               
              c) 
               
              d) 
   
                      Instructor should fill in the blanks with appropriate values. 
      

Signature of the instructor   
 

Date  
 

/       /           

 
Set C  
Create an appropriate set of tables to keep some business information. Populate the tables with 
information for the business process. State the business tasks that involve set of operations that 
you need to perform to extract information. Write and execute queries for the same. The names of 
tables & fields should be self-explanatory ( i.e. their names should depict the kind of data being 
stored. ) 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 97 

 
Exercise 19   Start Date  

    

      /      / 
 

 

 
To understand & get a Hands-on on  nested queries  & subqueries, that involves joining of tables, 
to demonstrate set cardinality. 

 
You should read following topics before starting this exercise 
1. Nesting of SQL queries and subqueries 
2. SQL statements involving  set membership, set comparisons and  set cardinality operations.  

 
SQL includes a feature for testing whether a subquery has any tuples in its result, using the 
following clauses :. 
Name Description  Syntax  Example  
Exists  The ‘exists’ construct 

returns the value true if 
the argument subquery 
is nonempty 

select <attribute-
list> from <relation-
list>  
        where  
<exists> { sub-
query} ; 

Select cname from 
borrower b where 
exists( select * from 
depositor where 
dname = b.cname);  

Not exists  We can test for the 
non-existence of tuples 
in a subquery by using 
the ‘not exists’ 
construct.  
The ‘not exists ‘ 
construct can also be 
used to simulate the 
set containment 
operation (the super 
set ). 
 We can write “relation 
A contains relation B” 
as “not exists (B except 
A)” 
 

select <attribute-
list> from <relation-
list>  
where  <not exists> 
{ sub-query}; 

Select cname from 
borrower b where not 
exists( select * from 
depositor where 
dname = b.cname); 

 
  

 
Consider the table you have prepared as part of self activity of exercise 18, Type the following 
queries , execute them and give the business task performed by each query 
�  1.  Select company-name from company  c where not exists (select city from company where 
company-name = “_______” except (select city from company where company-name = 
c.company-name)); 
�  2. Select ename  from employee e where exists (select manager-name from manages where 
manager-name = e.ename  group by manager-name having count(*) >3); 
�  3. Select company-name from company  c where not exists (select city from company where 
company-name = c.company-name  except (select city from company where company-name = 
“__________”)); 
�  4. Select ename from employee e where exists (select city from employee where city = e.city 
and ename <> e.ename group by city having count(*) > 5) 



 98 

�  5. Select company-name from company c where not exists (select company-name from 
company where city = c.city and company-name <> c.company-name)   
 
Instructor should fill in the blanks with appropriate values. 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 

 
Set A 
Consider the table you have prepared as part of Assessment work set A of exercise 18, Type the 
following queries, execute them and give the business task performed by each query 
�  1. List the names of employees who work in all the projects that “____________” works on. 
�  2. List the names of employees who work on only some projects that “______” works on 
�  3. List the names of the departments that have atleast one project under them .( write using 
‘exists ‘ clause) 
�  4. List the names of employees who do not work on “sales” project (write using ‘not exists’) 
clause 
�  5. List the names of employees who work only on those projects that are controlled by their 
department . 
�  6. List the names of employees who do not work on any projects that are controlled by their 
department 
 
Instructor should fill in the blanks with appropriate values. 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set B  
�  1. Design tables with the following constraints. Add any new attributes , as required by the 
queries.  
      Table name :  

Field name Data Type  Constraints 
   
   
   
   

 
     Table name :  

Field name Data Type  Constraints 
   
   
   
   

 
Relationship � _____________________________________________ 
 
Insert sufficient number of records in the relations / tables with appropriate values as 
suggested by some of the queries.    
Write & execute  queries for following business tasks. ( business tasks  should be using  
set cardinality operations &  should be similar to the ones given in set A ) 

 
              a) 
               

 b) 
               



 99 

              c) 
               
              d) 
   
              e) 
              
              f)  
 
Instructor should fill in the blanks with appropriate values. 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set C  
Create an appropriate set of tables to keep some business information. Populate the tables with 
information for the business process.  State the business tasks that involve set cardinality 
operations that you need to perform to extract information. Write and execute queries for the 
same. The names of tables & fields should be self-explanatory ( i.e. their names should depict the 
kind of data being stored. ) 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done           2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 100 

 
Exercise 20   Start Date  

    

      /      / 
 

 

 
Assignment related to small case studies ( Each case study will involve creating tables with 
specified constraints, inserting records to it & writing queries for extracting records from these 
tables) 

 
You should read following topics before starting this exercise 
1. All the assignments from 11 to 19 

 
Steps  in solving a case study:  

1. Read through the given case study carefully. 
2. Create the given relations  in the database. The database thus created should be in 3NF. 
(no data duplication, appropriate handling of the relationships) 

      3.  Insert sufficient number of records in the relations / tables.    
4. Create a new file with all the select queries in it. 

1. To execute each query  
       Cut & copy each query into the database prompt  OR 

       Type \i filename at SQL prompt. ( all queries in the file will get executed , one by one.  

 
�  1  Consider the following case study :  
A 4-wheeler  rental company  needs to develop a database to store the following information : the 
information about the cars , like the registration number, the chassis number, the type of the 
vehicle (car, jeep, SUV etc). the vehicles may have one or more luxurious features like AC, 
Stereo, tape, DVD player etc). 
The company also needs to maintain the information about its drivers  like driver licence no, 
name, address , age etc. 
A car is driven by different  drivers on  different days , a driver may drive different  cars on  
different days . The company also needs information regarding the different places to which the 
car had been driven down, the names of drivers who have driven it to these places alongwith the 
name of customers who had booked the car to that place. The information of the different 
destinations to which the cars from this  company can be driven down, also needs to be stored.  
Regarding customers, a customers can book more than one car to a place. The customers are 
allowed to book multiple cars to different places , in a single booking transaction. The name, 
address , no of passengers travelling in the car, the destination ,the rental cost etc needs to be 
stored.  
 
The following constraints are to be defined for the vehicles, drivers, destination places : 
    a) the vehicle make should be after the year 2000. 
     b) only vehicles of maruti, Tata are used by the company 
    c) drivers should be above 20 years of age 
    d) drivers should be staying in “pune” city 
    e) the destination places should be within 500km radius from Pune. 
 
Design the relational database for the above company , so that the following queries can be 
answered : 
1. List the names of drivers who have driven a car to “Mumbai” 
2. List the name of customers who have booked a “SUV” to “satara” 
3. List the names of customers who have booked cars to pune or Mumbai or Lonavla 
4. List the details of cars that have never driven down to “Mumbai” 
5. List the details of the place to which maximum number of customers have driven down. 
6. List the details of the driver who have driven  all the vehicles of the company. 



 101 

7. List the names of the drivers who have driven atleast two cars to “Mumbai 
8. List the names of drivers who have also driven some vehicles to “Mumbai” 
9. List the details of customers who have booked more than two vehicles to “solapur” 
10. List the names of customers who have booked maximum number of vehicles  
 
�  2.Consider the following case study  

An insurance agent sells policies to clients. Each policy is of a particular type like vehicle 
insurance, life insurance, accident insurance etc, and there can be many policies of a particular 
type. Each policy will have many monthly premiums, and each premium is associated to only one 
policy. Assume appropriate attributes for agents, policy , premiums, policy-types.  

The following constraints have to be defined on the relations 
  a. The policy types can be only accident, life , vehicle. 
   b. The agents can be only from pune, Mumbai, Chennai 
  c. The policy amount should be greater than 20000 
  d. The policy-sale-date should be greater than the policy-intro-date. 
 

Design the relational database for the above  , so that the following queries can be answered:  
1. List the names of agents living in ‘_________’ 
2. List the names of policy holders , who have bought policies from the agent ‘joshi’ 
3. List the names of policyholders, who have bought more than two policies from ‘joshi’ 
4. List the names of agents , who have sold policies to only customers who live in their own  
    City. 
5. List the names of agents who have sold atleast two policies. 
6. List the names of cities, which has the maximum number of agents. 
7. List the names of customers who have bought the maximum number of policies. 
8. List the details of all premiums , paid f 
or the policy number _______________ 
9. Update all policy amount to _____ , for all policies bought by customers from _____ city. 
10. Delete all policies , bought from ‘joshi’ 
11. _______________________________________________ 
12. _________________________________________________ 
13.___________________________________________________ 
14.___________________________________________________ 
15.___________________________________________________ 
 

Instructor should fill in the blanks with appropriate values. 
 

�  3.Consider the following case study 
A movie studio wants to develop a database to manage their office information , related to 
movies, actors, directors, producers. 
The following facts are relevant  
   a. Each actor has acted in one or more movies 
   b. Each director has directed many movies. 
   c. Each producer has produced many movies. 
   d Each movie is directed by one and only one director, but can be produced by more than one 
producers. 
   e. Each movie has one or more actors acting in it, in different roles. 
   f. Each actor & director has several addresses. Each address is made up of a house-no, street, 
city, state. 
 
The following constraints are defined on the relations. 
   a. Each movie can have a maximum budget of 10 lakhs 

b.  Each actor can chare a maximum of Rs. 10 lakhs for a movie. 
c. The roles that an actor can act in a movie can be any of the following : villan, hero, heroine, 

support. 
  

Design the relational database for the above  , so that the following queries can be answered:  
1. List the names of movies in which _________  has acted. 
2. List the names of actors who have acted in at least one movie, in which shahrukh has acted. 
3. List the names of actors who have acted in every movie in which _________ has acted. 



 102 

4. List the names of actors who have acted as a ‘villan’ in every movie, in which the actor has 
acted 
5. List the names of movies with the highest budget 
6. List the names of movies with the second highest budget 
7. List the names of actors who have acted in the maximum number of movies. 
8._____________________________________________________________ 
9. ______________________________________________________________ 
10._______________________________________________________________ 
11. Update the address of producer ______ . set the city to _________ 
12. Delete  information of all actors who have an address in pune. 
13. _________________________________________ 
14.__________________________________________ 
15 List the names of movies , produced by more than one producer. 
 
Instructor should fill in the blanks with appropriate values. 
 
�  4. Consider the following case study : 
A music company wants to go in for automation of their requirements. They want to develop a 
database  for maintaining the information of their music albums, singers, musicians, instruments. 
The following facts are relevant : 
a. each album is produced by many musicians, a musician can produce many albums 
b. a singer can sing for many albums, but an album consists of songs of only one singer. 
c. a musician can play many instruments, an instrument can be played by many musicians. 
 
The following constraints are to be placed on the relations 
a. each musician is paid a minimum of 50000 Rs. for each album 
b. all singers are from either pune, Mumbai or Chennai 
c. each instrument cost is maximum 10000 
 
Design the relational database for the above  , so that the following queries can be answered:  
 
1. ____________________________________ 
2. List the names of musicians who have played guitar for the album ________ 
3. list the names of musicians who palsy at least one instrument same as the one “joshi” plays. 
4. List the names of albums , in which “_________” has sung. 
5._________________________________________________ 
6._________________________________________________ 
7. List the names of albums released in 1998 
8. List the names of albums that have more than two instruments being played in it 
9. Delete all information of singers who have not sung in any album 
10. Delete all information of musicians , who have worked in the album “_________” 
 
Instructor should fill in the blanks with appropriate values. 
 
�  5 Consider the following case study  
A housing society needs to manage the administrative information related to the society. 
The society is made up of different types of flats like 2BHK, 1BHK, 3BHK. Each type has a well 
defined square-feet area . The  outright sale rate & the rental value of the flat depends on the type 
of the flat. Each flat has a  single owner. Each owner can have one or more flats in his name. The 
name, address , phone etc of the owner need to be maintained. For each flat, its type, the floor 
no, any internal specifications needs to be maintained.  
The society also contains a club-house, which is rented out to flat owners , at a nominal rate for 
conducting various functions / programmes. Society would like to print reports like number of 
functions held in the club-house during a month / period etc. 
Every month  maintenance amount is collected from the owners of the flats. Society needs to 
maintain this finance information, like how much amount collected for a month, whether any 
defaulters for a month, sending reminders to the defaulters etc.  
The expenditure information includes money spent on maintenance of the society like paying the 
sweepers, cleaners of the common area of the society, any emergency expense, salaries of the 
security etc. 



 103 

Every month the society would like to print a report of expenditure versus collection. 
 
Design the relational database for the above  , so that the following queries can be answered:  
1. List the flats of 2bhk type. 
2. List the 3bhk flats that are currently vacant. 
3. List the functions held in clubhouse during the month of “_________” 
4. List the names of owners , who have never conducted any functions in the clubhouse. 
5. List the payment defaulters for the month of “april” 
6. List the total expenditure for the month of _____________ 
7. List the month with the least expenditure. 
8. Transfer the flat in the name of ___________ to ____________ 
9. __________________________________________________ 
10.List the names of owners  , who own both a 2bhk and a _________ 
11. ________________________________________________________ 
12._________________________________________________________ 
 
Instructor should fill in the blanks with appropriate values. 
 
NB :  More small case studies can be designed by the instructors , so that  there can be    
maximum variation in work assigned to each student in a batch. 
The case studies  must cover almost all types of entities, attributes & relationships.  
The queries on the case studies , must be  similar to the ones done in assignments 15 to 19.  
 

Signature of the instructor   
 

Date  
 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 104 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

Lab Course I 



 105 

        
Exercise 1   Start Date  

    

      /      / 
 

 

 
To demonstrate the use of data types, simple operat ors and expressions 
 

 
You should read following topics before starting this exercise 

1. Different basic data types in C and rules of declaring variables in C 

2. Different operators and operator symbols in C 

3. How to construct expressions in C, operator precedence 

4. Problem solving steps- writing algorithms and flowcharts 

 
1. Data type Table 
 
Data  Data 

Format 
C Data 
Type 

C Variable 
declaration 

Input Statement  Output 
statement 

quantity 
month 
credit-
card 
number 

Numeric 
 

int 
Short 
int 
long int 

int  quantity; 
short month; 
long ccno; 

scanf(“%d”,&quantity); 
scanf(“%d”,&month); 
scanf(“%ld”, &ccno); 

printf(“The 
quantity is %d”, 
quantity); 
printf(“The credit 
card number is 
%ld, ccno); 

price 
π 

real 
 

float 
double 

float price; 
const double 
pi=3.141593; 
 

scanf(“%f”,&price); printf(“The price is 
%5.2f”,  price); 

grade character  char grade; scanf(“%c”,&grade) printf(“The grade 
is %c”,grade); 

 
2. Expression Examples 
 
Expression   C expression  
Increment by a 3 a = a + 3 
Decrement b by 1 b = b-1       or     b-- 
 2 a2 + 5 b/2  2*a*a + 5*b/2 
7/13(x-5)  (float)7/13*(x-5) 
5% of 56 (float)5/100*56 
n is between 12 to 70  n>=12 && n<=70 
πr2h Pi*r*r*h 
n is not divisible by 7 n %  7 != 0 
n is even  n%2== 0 
ch is an alphabet   ch>=’A’ && ch<=’Z’ || ch>=’a’ && ch<=’z’ 
Note: The operators in the above expressions will be executed according to precedence and 
associativity rules of operators. 
 
3. Sample program- to calculate and print simple interest after accepting principal sum, number of 
years and rate of interest. 



 106 

Program development steps 
 

Step 1 : Writing 
the Algorithm 

Step 2 : Draw the 
flowchart 
 

Step 3 : Writing Program 
 

1. Start 
2. Accept 

principal 
sum, rate of 
interest and 
number of 
years 

3. Compute 
Simple 
interest 

4. Output 
Simple 
Interest 

5. Stop 
 

 

/* Program to calculate simple interest */ 
#include <stdio.h> 
main( ) 
{ /* variable declarations */ 
 float amount, rateOfInterest, simpleInterest; 
 int noOfYears; 
 /* prompting and accepting input */ 
printf(“Give the Principal Sum”); 
scanf(“%f”,&amount); 
printf(“Give the Rate of Interest”); 
scanf(“%f”,&rateOfInterest); 
printf(“Give the Number of years”); 
scanf(“%d”,&noOfYears); 
 
/* Compute the simple Interest*/ 
simpleInterest=amount*noOfYears*rateOfInterest / 
100; 
 
/* Print the result*/ 
printf(“The simple Interest on amount %7.2f for %d 
years at the rate %4.2f is %6.2f”, amount, 
noOfYears, rateOfInterest, simpleInterest); 
} 

 

 
1. Type the sample program given above. Execute it for the different values as given below and 

fill the last column from the output given by the program. 
Follow the following guidelines  
a. At $ prompt type vi followed by filename. The filename should have .c as extension for 
example 
$vi pnr.c 
b. Type the sample program given above using vi commands and save it 

       Compile the program using cc compiler available in Linux 
       $cc  pnr.c 
       It will give errors if any or it will give back the $  prompt if there are no errors 

A executable file a.out is created by the compiler in current directory. The program can be 
executed by typing name of the file as follows giving the path. 
$ ./a.out 
Alternatively the executable file can be given name by using –o option while compiling as 
follows 
$cc pnr.c –o pnrexec 
$./pnrexec 
The executable file by specified name will be created. Note that you have to specify the path 
of pnrexec as ./pnrexec , i. e., pnrexec in current (. Stands for current directory) directory 
otherwise it looks for program by that name in the path specified for executable programs 
 
Sr. No Principal sum No of years Rate of interest Simple Interest 
1 2000 3 ____  
2 4500 ___ 4.5  
3 _____ 6 8.3  
 
 

start 

stop 

Compute 
Simple interest 

Read ,principal 
sum,  rate  and 
no of years 

Print Simple 
Interest 



 107 

2. If you have not typed the program correctly,i.e., if there are syntactical errors in the program, 
compiler will pinpoint the errors committed and are called compile-time errors. C compiler 
gives line no along with error messages when it detects grammatical or syntactical errors in 
the program. These messages are not so straightforward and you may find it difficult to 
identify the error. You may miss a semicolon at the end of a statement and the compiler 
points out error in the next statement. You may miss just a closing ‘*/’ of a comment and it will 
show errors in several statements following it. 
Another type of error which is quite common is the run-time or execution error. You are able 
to compile the program successfully but you get run-time messages or garbage output when 
you execute the program.  
Modify the above program to introduce the following changes, compile, write the error 
messages along with line numbers ,remove the error execute and indicate the type of error 
whether it was compile-time or execution time error. 
 
Modified line  Error messages and line 

numbers 
Type of error  

/* Program to calculate simple 
interest  
 

  

int noofYears; 
 

  

scanf(“%f”,&amount) 
 

  

scanf(“%f”, amount); 
 

  

scanf(“%d”, noOfYears); 
 

  

 
Signature of the instructor   

 
Date  

 

/       /           

 

 
Set A . Apply all the three program development ste ps for the following examples. 

�  1. Accept dimensions of a cylinder and print the surface area and volume (Hint: surface area = 
2πr2 + 2πrh, volume = πr2h) 

�  2. Accept temperatures in Fahrenheit (F) and print it in Celsius(C) and Kelvin (K) (Hint: C=5/9(F-
32), K = C + 273.15) 

�  3. Accept initial velocity (u), acceleration (a) and time (t). Print the final velocity (v) and the 
distance (s) travelled. (Hint: v = u + at, s = u + at2) 

�  4. Accept inner and outer radius of a ring and print the perimeter and area of the ring (Hint: 
perimeter = 2 π (a+b) , area = π (a2-b2) )  

�  5. Accept two numbers and print arithmetic and harmonic mean of the two numbers (Hint: AM= 
(a+b)/2  , HM = ab/(a+b) )  

�  6. Accept three dimensions length (l), breadth(b) and height(h) of a cuboid and print surface 
area and volume (Hint : surface area=2(lb+lh+bh ), volume = lbh ) 

�  7. Accept a character from the keyboard and display its previous and next character in order. 
Ex. If the character entered is ‘d’, display  “The previous character is c”, “The next character is e”. 

�  8. Accept a character from the user and display its ASCII value. 

 
Signature of the instructor   

 
Date  

 

/       /           

 

Set B . Apply all the three program development ste ps for the following examples. 



 108 

�  1. Accept the x and y coordinates of two points and compute the distance between the two 
points.  

�  2. Accept two integers from the user and interchange them. Display the interchanged numbers. 

�  3. A cashier has currency notes of denomination 1, 5 and 10. Accept the amount to be 
withdrawn from the user and print the total number of currency notes of each denomination the 
cashier will have to give. 

 
Signature of the instructor   

 
Date  

 

/       /           

 
Set C.  Write a program to solve the following prob lems 

�  1. Consider a room having one door and two windows both of the same size. Accept 
dimensions of the room, door and window. Print the area to be painted (interior walls) and area to 
be whitewashed (roof). 

�  2. The basic salary of an employee is decided at the time of employment, which may be 
different for different employees. Apart from basic, employee gets 10% of basic as house rent, 
30% of basic as dearness allowance. A professional tax of 5% of basic is deducted from salary. 
Accept the employee id and basic salary for an employee and output the take home salary of the 
employee. 

. 
Signature of the instructor   

 
Date  

 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 109 

 
Exercise 2   Start Date  

    

      /      / 
 

 
To demonstrate use of decision making statements su ch as if and if-else.  
 

 
You should read following topics before starting this exercise 

1. Different types of decision-making statements available in C. 

2. Syntax for these statements. 

 
During problem solving, we come across situations when we have to choose one of the 
alternative paths depending upon the result of some condition. Condition is an expression 
evaluating to true or false.  This is known as the Branching or decision-making statement. Several 
forms of If and else constructs are used in C to support decision-making. 

1) if statements 
2) if – else  
3) Nested if  

 
Note: If there are more than one statement in the if or else part, they have to be enclosed in  { } 
braces 
 

Sr. 
No 

Statement 
Syntax  

Flowchart  Example  

1. if statement  
 
if (condition) 
{ 
 statement; 
} 
 
 

  
if( n > 0) 
     printf(“Number 
is positive”); 
 

2. if - else 
statement 

 
if (condition) 
 { 
    statement; 
} 
else  
{ 
   statement; 
} 
 

  
if( n % 2 == 0) 
   printf(“Even”); 
else 
   printf(“Odd”); 
 

False        If   
condition ? 

   statement 

New statement 

True 

False        If   
condition ? 

   statement 

New statement 

True 

   statement 



 110 

3. Nested if  
 
if (condition) 
 { 
    if (condition) 
 {    statement;} 
else  
{   statement;} 
 
} 
else  
{ 
   if (condition) 
 {    statement; } 
else  
{   statement;  } 
 
} 

 

 

 
If ( a >= b)  
 { if ( a >= c) 
    printf(“ %d is 
maximum”,a); 
  else  
printf(“ %d is 
maximum”,c); 
} 
else 
{ 
if ( b >= c) 
    printf(“ %d is 
maximum”,b); 
  else  
printf(“ %d is 
maximum”,c); 
} 

 
4. Sample program- to check whether a number is within range. 
 

Step 1: Writing the 
Algorithm 
 

Step 2 : Draw the flowchart  
 

Step 3 : Writing Program  
 

 
1. Start 
2. Accept the number 
3. Check if number is 
within range 
4. if true  
    print “Number is 
within range “  
  otherwise  
    print “number is out 
of range”. 
5. Stop 
 
 

 /* Program to check range */ 
 
#include <stdio.h> 
main( ) 
{ /* variable declarations */ 
 int n; 
int llimit=50, ulimit = 100; 
 /* prompting and accepting input */ 
printf(“Enter the number”); 
scanf(“%d”,&n); 
if(n>=llimit && n <= ulimit) 
    printf(“Number is within range”);  
else 
    printf(“Number is out of range”); 
} 
 
 
 
 
 
 
 
 
 
 

 

b>= c 

c is 
max 

b is 
max 

True False 

True False 

start 

stop 

Read 
number 

Number is 
within range 

If(n in range) 

True 

Number is out 
of range 

False 

a>=b 

a>=c 

c is 
max 

a is 
max 

True 

False 



 111 

 

 
�  1. Execute the following program for five different values and fill in the adjoining table 
 

main() 
{ 
int n; 

  printf(“Enter no.”); 
  scanf(“%d”,&n); 
 if(n%___==0) 
    printf(“divisible); 
else 
    printf(“not divisible”); 

} 

n output 
  
  
  
  
  

 

 
�  2. Type the above sample program 4 and execute it for the following values.  
 

n Output message 
50  
100  
65  

____  
____  

 
�  3. Using the sample code 3 above write the complete program to find the maximum of three 
numbers and execute it for different set of values. 
 
Instructor should fill in the blanks with appropriate values. 
 

Signature of the instructor   
 

Date  
 

/       /           

                         

 
Set A: Apply all the three program development step s for the following examples.  

�  1. Write a program to accept an integer and check if it is even or odd. 

�  2. Write a program to accept three numbers and check whether the first is between the other 
two numbers. Ex: Input 20 10 30. Output: 20 is between 10 and 30 

�  3. Accept a character as input and check whether the character is a digit. (Check if it is in the 
range ‘0’ to ‘9’ both inclusive) 

�  4. Write a program to accept a number and check if it is divisible by 5 and 7. 

�  5. Write a program, which accepts annual basic salary of an employee and calculates and 
displays the Income tax as per the following rules.  

Basic:  < 1,50,000   Tax = 0 

 1,50,000 to 3,00,000  Tax = 20% 

 > 3,00,000   Tax = 30% 

�  6. Accept a lowercase character from the user and check whether the character is a vowel or 
consonant. (Hint: a,e,i,o,u  are vowels) 

 
Signature of the instructor   

 
Date  

 

/       /           

 



 112 

Set B: Apply all the three program development step s for the following examples.  

�  1. Write a program to check whether given character is a digit or a character in lowercase or 
uppercase alphabet. (Hint ASCII value of digit is between 48 to 58 and Lowercase characters 
have ASCII values in the range of 97 to122, uppercase is between 65 and 90) 

�  2. Accept the time as hour, minute and seconds and check whether the time is valid. (Hint: 
0<=hour<24, 0<=minute <60, 0<=second <60) 

�  3. Accept any year as input through the keyboard. Write a program to check whether the year is 
a leap year or not. (Hint leap year is divisible by 4 and not by 100 or divisible by 400) 

�  4. Accept three sides of triangle as input, and print whether the triangle is valid or not. (Hint:  
The triangle is valid if the sum of each of the two sides is greater than the third side). 

�  5. Accept the x and y coordinate of a point and find the quadrant in which the point lies.   

�  6. Write a program to calculate the roots of a quadratic equation. Consider all possible cases. 
�  7. Accept the cost price and selling price from the keyboard. Find out if the seller has made a 
profit or loss and display how much profit or loss has been made. 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set C: Write programs to solve the following proble ms 
  

�  1. Write a program to accept marks for three subjects and find the total marks secured , 
average and also display the class obtained. (Class I – above __%, class II – ___% to ___%, 
pass class – ___% to ___% and fail otherwise) 

�  2. Write a program to accept quantity and rate for three items, compute the total sales amount, 
Also compute and print the discount as follows: (amount  > ____– 20% discount, amount between 
___ to _____ -- 15% discount, amount between – ____ to ____ -- 8 % discount) 

�  3. A library charges a fine for every book returned late. Accept the number of days the member 
is late, compute and print the fine as follows:(less than five days Rs ___ fine, for 6 to 10 days Rs. 
____ fine and above 10 days Rs. ___ fine ) 

 
Instructor should fill in the blanks with appropriate values. 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 113 

 
Exercise 3   Start Date  

    

      /      / 
 

 
To demonstrate decision making statements (switch c ase) 

 

 
You should read following topics before starting this exercise 

1. Different types of decision-making statements available in C. 

2. Syntax for switch case statements. 

 

 
The control statement that allows us to make a decision from the number of choices is called a 
switch-case statement. It is a multi-way decision making statement. 
  
1. Usage of switch statement 
 

Statement Syntax  Flowchart  Example  

switch(expression) 
{ 
case value1: block1; 
                      break; 
case value2: block2; 
                      break; 
. 
. 
. 
default : default block; 
              break; 
} 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

switch (color) 
{ 
   case ’r’ : 
   case ’R’ : 
   printf (“RED”);   
   break; 
   case ’g’ : 
   case ’G’ :  
   printf (“GREEN”); 
   break; 
   case ’b’ : 
   case ’B’ : 
   printf (“BLUE”); 
   break; 
   default :  
   printf (“INVALID   
COLOR”);  
} 
 

 

case 1   Block 1 True 

case 4 

case 2 

case 3 

   start 

   stop 

 Default Block  

  Block 2 

  Block 3 

  Block 4 

 True 

True 

True 

False 

False 

False 

False 



 114 

 
2. The switch statement is used in writing menu driven programs where a menu displays several 

options and the user gives the choice by typing a character or number. A Sample program to 
display the selected option from a menu is given below. 

 
 

Step 1: 
Writing the 
Algorithm 
 

Step 2: Draw the flowchart  
 

Step 3: Writing Program  
 

1. Start 
2. Display the 
menu options 
3. Read choice 
4. Execute 

statement 
block 
depending 
on choice 

5. Stop 
 

  /* Program using switch case and 
menu */ 
 
#include <stdio.h> 
main( ) 
{ /* variable declarations */ 
 int choice; 
 /* Displaying the Menu */ 
printf(“\n 1. Option 1\n”); 
printf(“ 2. Option 2\n”); 
printf(“ 3. Option 3\n”); 
printf(“Enter your choice”); 
scanf(“%d”,&choice); 
switch(choice) 
{ 
  case 1:  
   printf(“Option 1 is selected”); 
   break; 
 case 2:  
   printf(“Option 2 is selected”); 
   break; 
case 3:  
   printf(“Option 3 is selected”); 
   break; 
default: 
   printf(“Invalid choice”); 
} 
} 
 

 

 
1. Write the program that accepts a char–type variable called color and displays appropriate 
message using the sample code 1 above. Execute the program for various character values and 
fill in the following table. Modify the program to include all rainbow colours 
 

Input character Output Message 
V  
I  
B  
G  
R  

 
Signature of the instructor   

 
Date  

 

/       /           

 

start 

stop 

Read choice 

Display 
Options 

case 1 Statement 1 True 

case 2 

case 3 

Statement 2 

Statement 3 

 True 

True 

False 

False 

Default statement  

True False 



 115 

 
Set A: Apply all the three program development step s for the following examples. 
 
�  1. Accept a single digit from the user and display it in words. For example, if digit entered is 9, 
display Nine.  
 
�  2. Write a program, which accepts two integers and an operator as a character (+ - * /), 
performs the corresponding operation and displays the result.  
 
�  3. Accept two numbers in variables x and y from the user and perform the following operations 
 

Options  Actions  
1. Equality  Check if x is equal to y 
2. Less Than Check if x is less than y 
3. Quotient and Remainder Divide x by y and display the quotient and remainder  
4. Range Accept a number and check if it lies between x and y 

(both inclusive) 
5. Swap Interchange x and y 

 
Signature of the instructor   

 
Date  

 

/       /           

 
Set B: Apply all the three program development step s for the following examples. 
 
�  1. Accept radius from the user and write a program having menu with the following options and 
corresponding actions 
 

Options Actions 
1. Area of Circle  Compute area of circle and print 
2. Circumference of Circle Compute Circumference of circle and print 
3. Volume of Sphere Compute Volume of Sphere and print 

 
�  2. Write a program having a menu with the following options and corresponding actions 
 

Options Actions 
1. Area of square Accept length ,Compute area of square and print 
2. Area of Rectangle Accept length and breadth, Compute area of rectangle 

and print 
3. Area of triangle Accept base and height , Compute area of triangle and 

print 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 



 116 

Set C: Write a program to solve the following probl ems 
 
� 1. Accept the three positive integers for date from the user (day, month and year) and check 
whether the date is valid or invalid. Run your program for the following dates and fill the table. 
(Hint: For valid date 1<=month<=12,1<= day <=no-of-days where no-of-days is 30 in case of 
months 4, 6,9 and 11. 31 in case of months 1,3,5,7,8,10 and 12. In case of month 2 no-of-days is 
28 or 29 depending on year is leap or not) 

 
Date Output 

12-10-1984  
32-10-1920  
10-13-1984  
29-2-1984  
29-2-2003  
29-2-1900  

__________  
 

�  2. Write a program having menu that has three options - add, subtract or multiply two fractions. 
The two fractions and the options are taken as input and the result is displayed as output. Each 
fraction is read as two integers, numerator and denominator. 
 
Instructor should fill in the blanks with appropriate values. 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 117 

 
Exercise 4   Start Date  

    

      /      / 
 

 
To demonstrate use of simple loops. 
 

 
You should read following topics before starting this exercise 

1. Different types of loop structures in C. 

2. Syntax and usage of these statements. 

 

 
We need to perform certain actions repeatedly for a fixed number of times or till some condition 
holds true. These repetitive operations are done using loop control statements. The types of loop 
structures supported in C are  

1. while  statement 
2. do-while statement 
3. for statement  

 
Sr.
No 

Statement S yntax  Flowchart  Example  

1. while statement  
 
while (condition) 
 { 
    statement 1; 
    statement 2; 

    . 
    . 

  } 
 

/* accept a  number*/ 
scanf(“%d”, &n); 
/* if not a single digit */ 
while ( n > 9) 
{ 
/* remove last digit 
  n = n /10; 
} 
 

2. do-while statement  
 

do 
{ 
    statement 1; 
    statement 2; 
    . 
    . 
} while (condition); 

 
 

/*initialize sum*/ 
sum =0; 
do 
{/* Get a number */ 
printf( “ give number”}; 
scanf(“%d”,&n); 
/* add number to sum*/ 
sum=sum+n; 
} while ( n>0); 
printf ( “sum is %d”, sum); 

True 

False 

Test 
Condition 

Loop Body 

True 

False 

Test 
Condition 

Loop Body 



 118 

3. for statement  
 
for(expr1; expr2; expr3) 
{ 
 statement 1 

    . 
    . 

} 
expr1 = initialization 
expression 
expr2 =  loop condition 
expr3 = alteration 
expression which alters 
the loop variable 

/* display first 10 multiples 
of 2 */ 
for( i=1; i <= 10; i++) 
{ 
   printf (“2 X %d = %d\n”, i, 
2*i); 
}  
    
 

 
Note: Usually the for loop is used when the statements have to executed for a fixed number of 
times. The while loop is used when the statements have to be executed as long as some 
condition is true and the do-while loop is used when we want to execute statements atleast once 
(example: menu driven programs) 
 
3. Sample program- to print sum of 1+2+3+…..n. 
 
Step 1: Writing 
the Algorithm 

Step 2: Draw the flowchart  Step 3: Writing Program  
 

1. Start 
2. Initialize sum to 
0. 
3. Accept n. 
4. Compute 
sum=sum+n 
5. Decrement n by 
1 
6. if n > 0  
     go to step 4 
7. Display value of 
sum. 
8. Stop 
 

 

/* Program to calculate sum of 
numbers */ 
 
#include <stdio.h> 
main( ) 
{ /* variable declarations */ 
 int sum = 0, n; 
 printf(“enter the value of n : “); 
 scanf(“%d”,&n); 
 while (n>0) 
  { 
   sum = sum + n; 
   n--; 
  } 
 printf(“\n The sum of numbers is 
%d”, sum); 
} 
 
 
 
 
 

 

True 

False 

Test  
expr2 

expr1 

Loop Body 

Expr3 

start 

stop 

Compute 
Sum=sum+n 

Read n 

Print value 
of sum 

  n>0 True 

False 

Sum = 0 



 119 

4.  Sample program- To read characters till EOF (Ctrl+Z) and count the total number of characters 
entered. 
 
 

Step 1 : Writing 
the Algorithm 

Step 2 : Draw the flowchart 
 

Step 3 : Writing Program 
 

1. Start 
2. Initialize count 
to 0. 
3. Accept ch. 
4. If ch !=EOF 
    Count = count 
+1 
   Else 
     Go to step 6 
5. Go to step 3 
7. Display value of 
sum. 
8. Stop 
 

 

/* Program to count number of characters 
*/ 
 
#include <stdio.h> 
main( ) 
{  

char ch; 
int count=0; 
while((ch=getchar())!=EOF) 
         count++; 
   
printf(“Total characters = %d”, count); 

} 
 
 
 
 
 

 

 
�  1. Write a program that accepts a number and prints its first digit. Refer sample code 1 given 
above. Execute the program for different values. 

�  2. Write a program that accepts numbers continuously as long as the number is positive and 
prints the sum of the numbers read. Refer sample code 2 given above. Execute the program for 
different values. 

�  3. Write a program to accept n and display its multiplication table. Refer to sample code 3 given 
above. 

�  4. Type the sample program to print sum of first n numbers and execute the program for 
different values of n. 
�  5. Write a program to accept characters till the user enters EOF and count number of times ‘a’ 
is entered. Refer to sample program 5 given above. 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 

start 

stop 

Count = count+1 

Read ch 

Print count

 False 

count = 0 

  
Ch=EOF
? 

True 



 120 

 

 
Set A . Apply all the three program development ste ps for the following examples. 

�  1.  Write a program to accept an integer n and display all even numbers upto n.  

�  2.  Accept two integers x and y and calculate the sum of all integers between x and y (both 
inclusive) 

�  3.  Write a program to accept two integers x and n and compute xn 

�  4. Write a program to accept an integer and check if it is prime or not.  

�  5.  Write a program to accept an integer and count the number of digits in the number. 

�  6. Write a program to accept an integer and reverse the number. Example: Input: 546, Output 
645.  

�  7. Write a program to accept a character, an integer n and display the next n characters. 

 

 

Signature of the instructor   
 

Date  
 

/       /           

 
Set B. Apply all the three program development step s for the following examples. 

�  1.  Write a program to display the first n Fibonacci numbers. (1 1 2 3 5 ……) 

�  2. Write a program to accept real number x and integer n and calculate the sum of first n terms 
of the series x+ 3x+5x+7x+…   

�  3. Write a program to accept real number x and integer n and calculate the sum of first n terms 

of the series 
x

1
 + 2

2
x

 + 3

3
x

+ …… 

�  4. Write a program to accept characters till the user enters EOF and count number of alphabets 
and digits entered. Refer to sample program 5 given above. 

�  5. Write a program, which accepts a number n and displays each digit in words. Example: 6702 
Output = Six-Seven-Zero-Two. (Hint: Reverse the number and use a switch statement) 

 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 

Set C.  Write C programs to solve the following pro blems 
 
�  1.  Write a program to accept characters from the user till the user enters * and count the 
number of characters, words and lines entered by the user.  (Hint: Use a flag to count words. 
Consider delimiters like \n \t , ; . and space for counting words) 
 
�  2. Write a program which accepts a number and checks if the number is a palindrome (Hint 
number = reverse of number)  
Example: number = 3472 Output: It is not a palindrome 
    number = 262, Output : It is a palindrome 
 
�  3. A train leaves station A at 4.00 a.m and travels at 80kmph. After every 30 minutes, it reaches 
a station where it halts for 10 minutes. It reaches its final destination B at 1.00 p.m. Display a 
table showing its arrival and departure time at every intermediate station. Also calculate the total 
distance between A and B.  
 



 121 

�  4. A task takes 4 ½ hours to complete. Two workers, A and B start working on it and take turns 
alternately. A works for 25 minutes at a time and is paid Rs 50, B works for 75 minutes at a time 
and is paid Rs. 150. Display the total number of turns taken by A and B, calculate their total 
amounts and also the total cost of the task.  
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  
 
 

 



 122 

 
Exercise 5   Start Date  

    

      /      / 
 

 

 
To demonstrate use of nested loops 

 

 
In the previous exercise, you used while, do-while and for loops. You should read following topics 
before starting this exercise 

1. Different types of loop structures in C. 

2. Syntax for these statements. 

3. Usage of each loop structure 

 
Nested loop means a loop that is contained within another loop. Nesting can be done upto any 
levels. However the inner loop has to be completely enclosed in the outer loop.  No overlapping of 
loops is allowed.   
 
Sr. 
No 

Format  Sample Program  

1. Nested for loop  
 
for(exp1; exp2 ; exp3) 
{  …………………… 
    for(exp11; exp12 ; exp13) 
    {  ……………………  
     } 
   ……………………. 
} 
 
 

/* Program to  display triangle of numbers*/ 
 
#include <stdio.h> 
void main( ) 
{  
  int n , line_number , number; 
  printf(“How many lines: ”); 
  scanf(“%d”,&n); 
  for(line_number =1 ;line_number <=n; 
line_number++ ) 
   { 
    for(number = 1; number <= line_number; 
number++) 
 printf (“%d\t”, number); 
     printf (“\n”); 
    } 
} 
 

2. Nested while loop / do while loop  
 
while(condition1) 
{  …………………… 
while(condition2) 
    {  ……………………  
     } 
   ……………………. 
} 
 
do 
{ …………………… 
   while(condition1) 
   { ……………….. 
   } 

/* Program to calculate sum of digits till 
sum is a single digit number */ 
 
#include <stdio.h> 
void main( ) 
{  
  int n , sum; 
  printf(“Give any number ”); 
  scanf(“%d”,&n); 
do 
{  
  sum =0; 
  printf(“%d --->”,n); 
  while ( n>0) 
  { sum +=n%10; 



 123 

………………. 
} while (condition2); 
 

    n= n/10; 
  } 
n=sum; 
} while( n >9); 
printf ( “ %d” , n); 
} 

 
Note: It is possible to nest any loop within another. For example, we can have a for loop inside a 
while or do while or a while loop inside a for. 
 

 
�  1. The Sample program 1 displays n lines of the following triangle. Type the program and 
execute it for different values of n. 

1 
1 2 
1 2 3 
1 2 3 4 

 
�  2.  Modify the sample program 1 to display n lines of the Floyd’s triangle as follows (here n=4). 

1 
2 3 
4 5 6 
7 8 9 10 

 

�  3. The sample program 2 computes the sum of digits of a number and the process is repeated 
till the number reduces to a single digit number. Type the program and execute it for different 
values of n and give the output 

 

Input number Output 
6534  
67  
8  
567  

 
Signature of the instructor   

 
Date  

 

/       /           

 

 
Set A . Write C programs for the following problems . 

�  1.  Write a program to display all prime numbers between ____ and ____. 

�  2. Write a program to display multiplication tables from ___ to ___ having n multiples each. The 
output should be displayed in a tabular format. For example, the multiplication tables of 2 to 9 
having 10 multiples each is shown below.  

 2 × 1 = 2  3 × 1 = 3 ………….9 × 1 = 9 
 2 × 2 = 4  3 × 2 = 6…………..9 × 2 = 18  

        ………….  …………. 
      2 × 10 = 20  3 × 10 = 30………..9 × 10 = 90 
 
�  3.  Modify the sample program 1 to display n lines as follows (here n=4). 

A B C D 
  E F G 
  H I 
  J 



 124 

 
Signature of the instructor   

 
Date  

 

/       /           

 
 
Set B. Write C programs for the following problems.  
 
�  1.  Write a program to display all Armstrong numbers between 1 and 500. (An Armstrong 
number is a number such that the sum of cube of digits = number itself Ex. 153 = 1*1*1  + 5*5*5  
+ 3*3*3 

 

�  2. Accept characters till the user enters EOF and count the number of lines entered. Also 
display the length of the longest line. (Hint: A line ends when the character is \n)  
 

�  3.  Display all perfect numbers below 500.  [A perfect number is a number, such that the sum of 
its factors is equal to the number itself].  Example: 6 (1 + 2 + 3), 28 (1+2+4+7+14)  

  

Signature of the instructor   
 

Date  
 

/       /           

 
Set C.  Write C programs to solve the following pro blems 
 

�  1.  A company has four branches, one in each zone: North, South, East and West. For each of 
these branches, it collects sales information once every quarter (four months) and calculates the 
average sales for each zone. Write a program that accepts sales details for each quarter in the 
four branches and calculate the average sales of each branch.   

�  2. A polynomial in one variable is of the form a0 + a1x + a2x
2 + …. For example, 6 - 9x + 2x5. 

Write a program to calculate the value of a polynomial. Accept the number of terms n , the value 
of x, and n+1coefficients.  

�  3. The temperature of a city varies according to seasons. There are four seasons – spring, 
summer, Monsoon and winter. The temperature ranges are: Spring (15-25 degrees), Summer 
(25-40 degrees), Monsoon (20-35 degrees), Winter (5-20 degrees). Accept weekly temperatures 
(12 weeks per season) for each season, check if they are in the correct range and calculate the 
average temperature for each season. 

 
Signature of the instructor   

 
Date  

 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 125 

 
Exercise 6   Start Date  

    

      /      / 
 

 

 
To demonstrate menu driven programs and use of stan dard library functions 

 

 
You should read following topics before starting this exercise 

1. Use of switch statement to create menus as in exercise 3 

2. Use of while and do while loops as in exercise 4 

 
A function is a named sub-module of a program, which performs a specific, well-defined task. It 
can accept information from the calling function in the form of arguments and return only 1 value.  
C provides a rich library of standard functions. We will explore some such function libraries and  
use these functions in our programs. 
 
ctype.h : contains function prototypes for performing various operations on characters. Some 
commonly used functions are listed below. 
  
Function  Name Purpose  Example  
isalpha Check whether a character is a alphabet if (isalpha(ch)) 
isalnum Check whether a character is alphanumeric if (isalnum(ch)) 
isdigit Check whether a character is a digit if (isdigit(ch)) 
isspace Check whether a character is a space if (isspace(ch)) 
ispunct Check whether a character is a punctuation 

symbol 
if (ispunct(ch)) 

isupper Check whether a character is uppercase alphabet if (isupper(ch)) 
islower Check whether a character is lowercase alphabet if (isupper(ch)) 
toupper Converts a character to uppercase ch = toupper(ch) 
tolower Converts a character to lowercase ch = tolower(ch) 
 
math.h :  This contains function prototypes for performing various mathematical operations on 
numeric data. Some commonly used functions are listed below. 
 

 
Note: If you want to use any of the above functions you must include the library for example 
#include <ctype.h> 
#include <math.h> 
In case of math library , it needs to be linked to your program. You have to compile the program 
as follows 
$ cc filename  -lm 
 

Function Name  Purpose  Example  
cos  cosine a*a+b*b – 2*a*b*cos(abangle) 
exp(double x)  exponential function, computes ex exp( x) 
log  natural logarithm c= log(x) 
log10  base-10 logarithm y=log10(x) 
pow(x,y)  compute a value taken to an 

exponent, xy 
y = 3*pow( x , 10) 

sin  sine z= sin(x) / x 
sqrt  square root delta=sqrt(b*b – 4*a*c) 



 126 

A program that does multiple tasks, provides a menu from which user can choose the appropriate 
task to be performed. The menu should appear again when the task is completed so that the user 
can choose another task. This process continues till the user decides to quit. A menu driven 
program can be written using a combination of do-while loop containing a switch statement. One 
of the options provided in a menu driven program is to exit the program.  
 
Statement Syntax  Flowchart  Example  
do 
{ 
 display menu; 
 accept choice; 
switch(choice) 
{ 
case value1: 
block1; 
                      
break; 
case value2: 
block2; 
                      
break; 
. 
. 
. 
default : default 
block; 
  } 
}while(choice != 
exit); 
 

 

ch = getchar() ;  
do 
{   
  pr in t f ( “ \n 1:  ISUPPER ”) ;  
  pr in t f ( “ \n 2:  ISLOW ER ”) ;  
  pr in t f ( “ \n 3:  ISDIGIT “) ;  
  pr in t f ( “ \n 4:  EXIT”) ;  
   
  pr in t f ( “Enter  your  choice 
:” ) ;  
  scanf(“%d” , &choice) ;  
 
  swi tch (choice)  
  {   
   case 1:  i f ( isupper(ch))  
                  
pr in t f ( “Uppercase”) ;  
         break; 
   case 2: i f ( is lower(ch))  
                  
pr in t f ( “Lowercase”) ;  
         break; 
   case 3: i f ( isd ig i t(ch) )  
                  pr in t f ( “Dig it” ) ;  
         break; 
   }  
}whi le (choice!=4) ;  
 

 

  
1. Write a menu driven program to perform the following operations on a character type variable.  

i. Check if it is an alphabet  
ii. Check if it is a digit. 
iii. Check if it is lowercase. 
iv. Check if it is uppercase. 
v. Convert it to uppercase. 
vi. Convert it to lowercase. 

Refer to the sample code given above and use standard functions from ctype.h 
 

 
Set A . Write C programs for the following problems  
 
�  1. Write a program, which accepts a character from the user and checks if it is an alphabet, digit 
or punctuation symbol. If it is an alphabet, check if it is uppercase or lowercase and then change 
the case.  
 

case 1 block1 True 

case 2 

   start 

   stop 

default block 

block 2 
True 

False 

False 

Display menu  

Accept choice 

choice=exit
? 

True 

False 



 127 

�  2. Write a menu driven program to perform the following operations till the user selects Exit. 
Accept appropriate data for each option.  Use standard library functions from math.h 
i. Sine  ii. Cosine iii.  log    iv. ex  v. Square Root    vi. Exit 
 
�  3. Accept two complex numbers from the user (real part, imaginary part). Write a menu driven 
program to perform the following operations till the user selects Exit. 
i. ADD  ii. SUBTRACT  iii.  MULTIPLY  iv. EXIT   
 

Signature of the instructor   
 

Date  
 

/       /           

Set B . Write C programs for the following problems  
 
�  1. Accept x and y coordinates of two points and write a menu driven program to perform the 
following operations till the user selects Exit. 

i. Distance between points. 
ii. Slope of line between the points. 
iii. Check whether they lie in the same quadrant. 
iv. EXIT   

(Hint: Use formula m = (y2-y1)/(x2-x1) to calculate slope of line.) 
 
�  2. Write a simple menu driven program for a shop, which sells the following items:  
The user selects items using a menu. For every item selected, ask the quantity. If the quantity of 
any item is more than 10, give a discount of _____%.  When the user selects Exit, display the 
total amount.  
    

Item Price  
  
  
  
  
  

 
Instructor should fill in the blanks with appropriate values. 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set C . Write C programs for the following problems  
 
�  1. Write a program to calculate the total price for a picnic lunch that a user is purchasing for her 
group of friends. She is first asked to enter a budget for the lunch. She has the option of buying 
apples, cake, and bread. Set the price per kg of apples, price per cake, and price per loaf of bread 
in constant variables. Use a menu to ask the user what item and how much of each item she 
would like to purchase. Keep calculating the total of the items purchased. After purchase of an 
item, display the remaining amount. Exit the menu if the total has exceeded the budget. In 
addition, provide an option that allows the user to exit the purchasing loop at any time.  
 

Signature of the instructor   
 

Date  
 

/       /           

 
 

Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 128 

 
Exercise 7   Start Date  

    

      /      / 
 

 

 
To demonstrate writing C programs in modular way (u se of user defined functions) 

 

 
You should read following topics before starting this exercise 

1. Declaring and Defining a function 
2. Function call 
3. Passing parameters to a function 
4. Function returning a value 

 

 
You have already used standard library functions. C allows to write and use user defined 
functions. Every program has a function named main. In main you can call some functions which 
in turn can call other functions. 
 
The following table gives the syntax required to write and use functions 
Sr. 
No 

Actions involving 
functions 

Syntax  Exampl e 

1. Function declaration returntype function(type arg1, 
type arg2 … ); 

void display(); 
int sum(int x, int y); 
 

2. Function definition returntype function(type arg1, 
type arg2 … ) 
{ 
   /* statements*/ 
} 

float calcarea (float r) 
{ 
   float area = Pi *r*r ; 
   return area; 
} 

3.  Function call function(arguments); 
variable = function(arguments); 
 

display(); 
ans = calcarea(radius); 

 
1. Sample code 
 
The program given below calculates the area of a circle using a function and uses this function to 
calculate the area of a cylinder using another function. 
 
    /* Program to calculate area of circle and cylinder using function */ 

 
#include <stdio.h> 
void main() 
{ 
 float areacircle (float r); 
       float areacylinder(float r, int h); 
 float area, r; 
 printf(“\n Enter Radius: “); 
 scanf(“%f”,&r); 
 
 area=areacircle(r); 

printf(“\n Area of circle =%6.2f”, area);  
 
      printf(“\n Enter Height: “); 



 129 

 scanf(“%d”,&h); 
      area=areacylinder(r,h); 

printf(“\n Area of cylinder =%6.2f”, area);  
} 
 
float areacircle (float r) 
{ 
 const float pi=3.142; 

return(pi * r*r ); 
} 
float areacylinder (float r, int h) 
{ 
 return 2*areacircle(r)*h; 

      } 
 
2. Sample code 
 
The function iswhitespace returns 1 if its character parameter is a space, tab or newline 
character. The program accepts characters till the user enters EOF and counts the number of 
white spaces.  
 
     /* Program to count whitespaces using function */ 

 
#include <stdio.h> 
void main() 
{ 
 int iswhitespace (char ch); 
 char ch; 
      int count=0; 
  
      printf(“\n Enter the characters. Type CTRL +Z to terminate: “); 
 while((ch=getchar())!=EOF) 
            if(iswhitespace(ch)) 
                count++; 

printf(“\n The total number of white spaces =%d”, count);  
} 
int iswhitespace (char ch) 
{ 

switch(ch) 
{ 
   case ‘ ‘: 
   case ‘\t’ : 
   case ‘\n’ : return 1; 
   default : return 0; 
 } 

} 
 

 

 
�  1. Type the program given in sample code 1 above and execute the program. Comment 
function declarations and note down the type of error and the error messages received. Add 
another function to calculate the volume of sphere and display it.  

�  2. Type the program given in sample code 2 above and execute the program. Comment 
function declaration and note down the type of error and the error messages received. Modify the 
function such that it returns 1 if the character is a vowel. Also count the total number of vowels 
entered. 



 130 

 
Set A . Write C programs for the following problems  

�  1. Write a function isEven, which accepts an integer as parameter and returns 1 if the number is 
even, and 0 otherwise. Use this function in main to accept n numbers and ckeck if they are even 
or odd. 

�  2. Write a function, which accepts a character and integer n as parameter and displays the next 
n characters.  
 
�  3. Write a function, which accepts a character and integer n as parameter and displays the next 
n characters.  
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set B . Write C programs for the following problems  

�  1. Write a function isPrime, which accepts an integer as parameter and returns 1 if the number 
is prime and 0 otherwise. Use this function in main to display the first 10 prime numbers. 

 
�  2. Write a function that accepts a character as parameter and returns 1 if it is an alphabet, 2 if it 
is a digit and 3 if it is a special symbol. In main, accept characters till the user enters EOF and use 
the function to count the total number of alphabets, digits and special symbols entered.  
 
�  3. Write a function power, which calculates xy. Write another function, which calculates n! Using 
for loop. Use these functions to calculate the sum of first n terms of the Taylor series: 

sin(x) = x -  
!3

3x
 + 

!5

5x
+ …… 

 
Signature of the instructor   

 
Date  

 

/       /           

 
 
Set C . Write C programs for the following problems  

�  1. Write a menu driven program to perform the following operations using the Taylor series. 
Accept suitable data for each option. Write separate functions for each option.  

i. ex 

 

ii. sin(x) 
 

 

iii. cos (x) 

 

Define separate functions to calculate xy and n! and use them in each function.  

   

Signature of the instructor   
 

Date  
 

/       /           

 
Assignment Evaluation                                    Sign ature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 131 

 
Exercise 8   Start Date  

    

      /      / 
 

 
To demonstrate Recursion. 

 
You should read the following topics before starting this exercise 

1. Recursive definition 

2. Declaring and defining a function 

3. How to call a function 

4. How to pass parameters to a function 

 
Recursion is a process by which a function calls itself either directly or indirectly. The points to be 
remembered while writing recursive functions 
i. Each time the function is called recursively it must be closer to the solution. 
ii. There must be some terminating condition, which will stop recursion. 
iii. Usually the function contains an if –else branching statement where one branch makes 

recursive call while other branch has non-recursive terminating condition 
Expressions having recursive definitions can be easily converted into recursive functions 
 
Sr. 
No 

Recursive definition  Recursive Function  Sample program  
 

1. The recursive definition 
for factorial is given 
below: 
 
n!=  1   if n = 0 or 1 
   =  n * (n-1)! if n > 1 
 

long int factorial (int n) 
{ 
 If (n==0)||(n==1))  
/* terminating condition */ 
 return(1); 
 else 
 return(n* factorial(n-
1));  
             /* recursive call */ 
}  
 

#include <stdio.h> 
main() 
{ 
int num; 
/* function declaration */ 
long int factorial(int n); 
printf(“\n enter the 
number:”); 
scanf(“%d”,&num); 
printf(“\n The factorial of 
%d is 
%ld”,num,factorial(num)); 
}  
/* function code*/ 
 

2. The recursive definition 
for nCr ( no of 
combinations of r objects 
out of n objects) is as 
follows 
nCn = 1 
nC0 = 1 
nCr = n-1Cr + nCr-1 

long int nCr( int n, int r) 
{ if(n==r || r==0)  
/* terminating condition */ 
     return(1); 
 else 
     return ( nCr(n-1,r) + 
nCr(n, r-1));  
             /* recursive call */ 
} 
 

#include <stdio.h> 
/* function code*/ 
main() 
{ 
int n, r; 
printf(“\n enter the total 
number of objects:”); 
scanf(“%d”,&n); 
printf(“\n enter the number 
of objects to be selected”); 
scanf(“%d”,&r); 
printf(“\n The value  
%dC%d is %ld”,n, r, 
nCr(n,r)); 
} 
 



 132 

 

 
�  1. Write the sample program 1 given above and execute the program.  Modify the program to 
define a global integer variable count and increment it in factorial function. Add a printf statement 
in main function for variable count. Execute the program for different values and fill in the 
following table.  
 
Sr. No. num factorial Count 
1. 0   
2 1   
3 5   
4 __   
5 ___   
 
�  2. Write the sample program 2 given above and execute the program for different values of n 
and r.  Modify the program to define a global integer variable count and increment it in nCr 
function. Add a print statement in main function for variable count. Execute the program for 
different values and fill in the following table 
 
Sr. No. n r nCr Count 
1. 5 0   
2 5 5   
3 5 2   
4 5 __   
5 ___ __   
 
Instructor should fill in the blanks with appropriate values. 
 

Signature of the instructor   
 

Date  
 

/       /           

 

 
Set A . Write C programs for the following problems  
 

�  1. Write a recursive C function to calculate the sum of digits of a number. Use this function in 
main to accept a number and print sum of its digits. 

�  2. Write a recursive C function to calculate the GCD of two numbers. Use this function in main.  

The GCD is calculated as : 

gcd(a,b) = a   if  b = 0   

         = gcd (b, a mod b) otherwise 

�  3. Write a recursive function for the following recursive definition. Use this function in main to 
display the first 10 numbers of the following series  

an =  3   if n = 1 or 2 

   =  2* an-1 + 3*an-2 if n > 2 

 

�  4. Write a recursive C function to calculate xy. (Do not use standard library function) 

 
Signature of the instructor   

 
Date  

 

/       /           

 



 133 

Set B . Write C programs for the following problems  
 
�  1. Write a recursive function to calculate the nth Fibonacci number. Use this function in main to 
display the first n Fibonacci numbers. The recursive definition of nth Fibonacci number is as 
follows: 
   fib(n) =  1   if n = 1 or 2 
 = fib(n-2) + fib(n-1) if n>2 
 
�  2. Write a recursive function to calculate the sum of digits of a number till you get a single digit 
number. Example: 961 -> 16  -> 5. (Note: Do not use a loop) 
 

�  3. Write a recursive C function to print the digits of a number in reverse order. Use this function 
in main to accept a number and print the digits in reverse order separated by tab. 

 Example 3456 

6 5 4 3 

(Hint:  Recursiveprint(n) = print n if n is single digit number 

                               = print n % 10 + tab + Recursiveprint( n/10) 

 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set C . Write C programs for the following problems  
 
�  1.  The “Towers of Hanoi” problem:  The objective is to move a set of disks arranged in 
increasing sizes from top to bottom from the source pole to a destination pole such that they are 
in the same order as before using only one intermediate pole subject to the condition that 

• Only one disk can be moved at a time 
• A bigger disk cannot be placed on a smaller disk. 

Write a recursive function which displays all the steps to move n disks from  A to C. 
 

1

disks

Source
Needle 

(A)

Intermediate
needle

(B)

Destination
Needle  

(C)

2
3
4
5

 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 

Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 134 

 
Exercise 9   Start Date  

    

      /      / 
 

 

 
To demonstrate use of 1-D arrays and functions. 

 

 
You should read the following topics before starting this exercise 

1. What are arrays and how to declare an array? 

2. How to enter data in to array and access the elements of an array. 

3. How to initialize an array and how to check the bounds of an array? 

4. How to pass an array to a function 

 
An array is a collection of data items of the same data type referred to by a common name. Each 
element of the array is accessed by an index or subscript. Hence, it is also called a subscripted 
variable. 
 
Actions involving 
arrays 

syntax  Example  

Declaration of array   
 

data-type array_name[size]; int temperature[10]; 
float pressure[20]; 

Initialization of array data-type array_name[]={element1, 
element2, ……, element n}; 
 
data-type 
array_name[size]={element-1, 
element-2, ……, element-size}; 
 
You cannot give more number of 
initial values than the array size. If 
you specify less values, the 
remaining will be initialized to 0. 

int  marks[]={45,57,87,20,90}; 
marks[3] refers to the fourth 
element  which equals 20 
 
int  count[3]={4,2,9}; 
count[2] is the last element 9 
while 4 is count[0] 

Accessing elements of 
an array 

The array index begins from 0 
(zero)  To access an array element, 
we need to refer to it as 
array_name[index].  
 

Value = marks[3]; 
This refers to the 4th element 
in the array 

Entering data into an 
array. 

 

 for (i=0; i<=9; i++) 
 scanf(“%d”, &marks[i]); 

 
Printing the data from 
an array 

 

 for(i=0; i<=9; i++) 
 printf(“%d”, marks[i]); 

 
Arrays and function 
 

We can pass an array to a function 
using two methods. 
1. Pass the array element by 
element 
2. Pass the entire array to the 
function 

/* Passing the whole array*/ 
void modify(int a[5]) 
{ 
    int i;  
   for(i=0; i<5 ; i++) 

  a[i] = i; 
} 
 

 



 135 

 
Sample program to find the largest element of an array 
 
/* Program to find largest number from array */ 
 
#include<stdio.h> 
int main() 
{ 
     int arr[20]; int n; 
     void accept(int a[20], int n); 
     void display(int a[20], int n); 
     int maximum(int a[20], int n); 
 
     printf(”How many numbers :”); 
     scanf(“%d”, &n); 
     accept(arr,n); 
     display(arr,n); 
     printf(“The maximum is :%d” , maximum(arr,n)); 
} 
 
void accept(int a[20], int n) 
{ 
     int i; 
     for(i=0; i<n ; i++) 

  scanf(“%d”, &a[i]); 
} 
 
void display(int a[20], int n) 
{ 
     int i; 
     for(i=0; i<n ; i++) 

  printf(“%d\t”, a[i]); 
} 
int maximum(int a[20], int n) 
{ 
     int i, max = a[0]; 
 
     for(i=1; i<n ; i++) 

  if(a[i] > max) 
    max = a[i]; 

     return max; 
} 
 
 

 
�  1. Write a program to accept n numbers in an array and display the largest and smallest 
number. Using these values, calculate the range of elements in the array.  Refer to the sample 
code given above and make appropriate modifications. 
 
�  2. Write a program to accept n numbers in an array and calculate the average.  Refer to the 
sample code given above and make appropriate modifications. 
 

Signature of the instructor   
 

Date  
 

/       /           

 



 136 

 

 
 
Set A.  Write programs to solve the following probl ems 
 
�  1.  Write a program to accept n numbers in the range of 1 to 25 and count the frequency of 
occurrence of each number.  
 
�  2.  Write a function for Linear Search, which accepts an array of n elements and a key as 
parameters and returns the position of key in the array and -1 if the key is not found. Accept n 
numbers from the user, store them in an array. Accept the key to be searched and search it using 
this function. Display appropriate messages.  
 
�  3.  Write a function, which accepts an integer array and an integer as parameters and counts 
the occurrences of the number in the array.  
 
�  4.  Write a program to accept n numbers and store all prime numbers in an array called prime. 
Display this array. 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 
Set B.  Write programs to solve the following probl ems 
 
�  1.  Write a program to accept n numbers from the user and store them in an array such that the 
elements are in the sorted order. Display the array. Write separate functions to accept and display 
the array. (Hint: Insert every number in its correct position in the array) 
 
�  2.  Write a function to sort an array of n integers using Bubble sort method. Accept n numbers 
from the user, store them in an array and sort them using this function. Display the sorted array.  
 
�  3.  Write a program to accept a decimal number and convert it to binary, octal and hexadecimal. 
Write separate functions. 
 
�  4.  Write a program to find the union and intersection of the two sets of integers (store it in two 
arrays). 
 
�  5.  Write a program to remove all duplicate elements from an array. 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 



 137 

Set C.  Write programs to solve the following probl ems 
 
�  1.  Write a program to merge two sorted arrays into a third array such that the third array is also 
in the sorted order. 
 
a1 10 25 90      
a2 9 16 22 26 10

0 
   

a3 9 10 16 22 25 26 90 100 
 
�  2. Write a program to accept characters from the user till the user enters EOF and calculate the 
frequency count of every alphabet.  Display the alphabets and their count.  
Input: THIS IS A SAMPLE INPUT 
Output: Character Count 
  T 2 
  H 1 
  I 3 
  ……. 
 
�  3.  Write a recursive function for Binary Search, which accepts an array of n elements and a key 
as parameters and returns the position of key in the array and -1 if the key is not found. Accept n 
numbers from the user, store them in an array and sort the array. Accept the key to be searched 
and search it using this function. Display appropriate messages 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  
 
 

 



 138 

 
Exercise 10   Start Date  

    

      /      / 
 

 

 
To demonstrate use of 2-D arrays and functions. 

 

 
You should read the following topics before starting this exercise 

1. How to declare and initialize two-dimensional array 
2. Accessing elements 
3. Usage of two dimensional arrays 

 

 
Actions involving 
2-D arrays 

syntax  Example  

Declaration of 2-D 
array   
 

data-type array_name[size][size]; 
 

int mat[10][10]; 
float sales[4][10]; 

Initialization of 2-D 
array 

data-type array_name[rows][cols]={ 
{elements of row 0},{ elements of row 
1},…..};       
data-type array_name[][cols]={element1, 
element2, ……, element size}; 
 

int num[][2] = {12, 34, 23, 
45, 56, 45}; 
int num[3][2] = { {1,2}, 
{3,4}, {5,6}};   
int num[3][2] = { 1,2,3,4, 
5,6};   
 

Accessing 
elements of 2-D 
array 

Accessing elements of an two-
dimensional array - in general, the array 
element is referred as 
array_name[index1][index2] where index1 
is the row location of and index2 is the 
column location of an element in the 
array.  
 

int m[3][2]; 
m is declared as a two 
dimensional array (matrix) 
having 3 rows (numbered 0 
to 2) and 2 columns 
(numbered 0 to 1).  The 
first element is m[0] [0] and 
the last is m [2][1].  
value = m[1][1]; 

Entering data into 
a 2-D array. 

 

 int  mat[4][3]; 
for (i=0; i<4; i++)    
/* outer loop for rows */ 
  for (j=0;j<3; j++)   
/* inner loop for columns */ 

scanf(“%d”, &mat[i][j]); 
 

Printing the data 
from a 2-D array 

 

 for (i=0; i<4; i++)    
/* outer loop for rows */ 
{ 

for (j=0;j<3; j++)   
/* inner loop for columns */ 

printf(“%d\t” , mat[i][j]); 
       printf(”\n”); 
 } 
 

 



 139 

Sample program to accept, display and print the sum of elements of each row of a matrix. 
 
/* Program to calculate sum of rows of a matrix*/ 
 
#include<stdio.h> 
int main() 
{ 
     int mat[10][10], m, n;  
     void display(int a[10][10], int m, int n); 
     void accept(int a[10][10], int m, int n); 
     void sumofrows(int a[10][10], int m, int n); 
 
     printf(“How many rows and columns? ”); 
    scanf(“%d%d”,&m, &n); 
 
     printf(“Enter the matrix elements :”); 
     accept(mat, m, n); 
     printf(“\n The matrix is :\n”); 
     display(mat, m, n); 
     sumofrows(mat,m,n); 
 } 
 
void accept(int a[10][10], int m, int n) 
{ 

int i,j;  
for (i=0; i<m; i++)   /* outer loop for rows */ 
  for (j=0;j<n; j++)  /* inner loop for columns */ 

scanf(“%d”, &a[i][j]); 
} 
void display(int a[10][10], int m, int n) 
{ 

int i,j;  
printf(”\nThe elements of %d by %d matrix are\n”, m, n); 
for (i=0; i<m; i++)   /* outer loop for rows */ 
{ 
  for (j=0;j<n; j++)  /* inner loop for columns */ 

printf(“%d\t” , a[i][j]); 
        printf(”\n”); 
   } 
}  
void somofrows(int a[10][10], int m, int n) 
{ 

int i,j, sum; 
for (i=0; i<m; i++)   /* outer loop for rows */ 
{ sum=0’ 
  for (j=0;j<n; j++)  /* inner loop for columns */ 

sum= sum+a[i][j]; 
       printf(“Sum of elements of row %d = %d”, i, sum); 
    } 
} 
 
 

 
1. Write a program to accept, display and print the sum of elements of each row and sum of 
elements of each column of a matrix. Refer to sample code given above. 
 

Signature of the instructor   
 

Date  
 

/       /           



 140 

 

 
Set A . Write C programs for the following problems . 
 
�  1.  Write a program to accept a matrix A of size mXn and store its transpose in matrix B. Display 
matrix B. Write separate functions.  
 
�  2.  Write a program to add and multiply two matrices. Write separate functions to accept, 
display, add and multiply the matrices. Perform necessary checks before adding and multiplying 
the matrices.  
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 
Set B . Write C programs for the following problems . 
 
�  1. Write a menu driven program to perform the following operations on a square matrix. Write 
separate functions for each option.  

i) Check if the matrix is symmetric. 
ii) Display the trace of the matrix (sum of diagonal elements). 
iii) Check if the matrix is an upper triangular matrix. 

 
�  2. Write a menu driven program to perform the following operations on a square matrix. Write 
separate functions for each option.  

i) Check if the matrix is a lower triangular matrix. 
ii) Check if it is an identity matrix. 

 
�  3. Write a program to accept an mXn matrix and display an m+1 X n+1 matrix such that the 
m+1th row contains the sum of all elements of corresponding row and the n+1th column contains 
the sum of elements of the corresponding column. 
Example: 
A    B 
1 2 3  1 2 3 6 
4 5 6  4 5 6 15 
7 8 9  7 8 9 24 
    12 15 18 45 
 

 
Signature of the instructor   

 
Date  

 

/       /           

 
Set C.  Write programs to solve the following probl ems 
 
�  1.  Pascal's triangle is a geometric arrangement of the binomial coefficients in a triangle. It is 
named after Blaise Pascal. Write a program to display n lines of the triangle.  

 
1 

1     1 
1     2     1 

1     3     3     1 
1     4     6     4     1 

1     5    10    10     5     1 
1     6    15    20    15     6     1 

 
 



 141 

�  2.  A magic square of order n is an arrangement of n² numbers, in a square, such that the n 
numbers in all rows, all columns, and both diagonals sum to the same constant. A normal magic 
square contains the integers from 1 to n². The magic constant of a magic square depends on n 
and is M(n) = (n3+n)/2. For n=3,4,5, the constants are 15, 34, 65 resp.  Write a program to 
generate and display a magic square of order n.  

 
 

 
Signature of the instructor   

 
Date  

 

/       /           

 
 

Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  
 
 



 142 

 
Exercise 11   Start Date  

    

      /      / 
 

 

 
To demonstrate use of pointers in C. 
 

 
 
You should read the following topics before starting this exercise 
1.  What is a pointer? 
2.  How to declare and initialize pointers. 
3.  ‘*’ and ‘&’ operators. 
5. Pointer to a pointer. 
6. Relationship between array and pointer. 
7. Pointer to array and Array of pointers. 
8. Dynamic memory allocation (malloc, calloc, realloc, free). 

 
A Pointer is a variable that stores the memory address of another variable 
 
Actions involving 
Pointers 

syntax  Example  

Declaration of pointers   
 

data_type * pointer_name  int *p1,*p2; 
float *temp1; 

Initialization of pointers pointer =&variable 
p1=&n; 

 int a, *p= &a; 
 

Pointer Arithmetic  The C language allow 
arithmetic operations to be 
performed on pointers: 
Increment, Decrement, 
Addition, Subtraction 
When a pointer is incremented ( 
or decremented) by 1, it 
increments by sizeof(datatype). 
For example, an integer pointer 
increments by sizeof(int). 
 

 

Pointers and Functions We can pass the address of a 
variable to a function. The 
function can accept this 
address in a pointer and use 
the pointer to access the 
variable’s value. 

 

Arrays And Pointers An array name is a pointer to 
the first element in the array. It 
holds the base address of the 
array. Every array expression is 
converted to pointer expression 
as follows: a[i]  is same as  
*(a+i) 
 

int n; 
*n , *(n + 0 ) represents 0th 
element 
n[ j ], *(n+ j ),* (j + n) , j [ n ] : 
represent the value of the jth 
element of array n 
 

Pointer To Pointer  int a; 
int * p; 
int **q; 
p = &a; 



 143 

q = *p ; 
To allocate memory 
dynamically 

The functions used are : malloc, 
calloc, realloc 
ptr = ( cast-type * ) malloc ( 
byte-size) ; 
Allocates a block of contiguous 
bytes. If the space in heap is 
not sufficient to satisfy request, 
allocation fails, returns NULL. 
ptr1 = ( cast-type * ) calloc ( 
byte-size); 
Similar to malloc, but initializes 
the memory block allocated to 
0. 
ptr = realloc ( ptr, new size ); 
To increase / decrease memory 
size. 
 

int * p,*p1; 
p = (int *) malloc(10 * 
sizeof(int)); 
p1 = (int *) calloc(10, 
sizeof(int)); 
p1=realloc(p1,20*sizeof(int)); 

 
1. Sample program 
/* Program to  swap two numbers*/ 
main() 
{ 

int a = 10, b = 20; 
void swap1( int x, int y); 
void swap2( int *ptr1, int *ptr2); 
 
printf(“\nBefore swapping : a=%d, b=%d”, a,b); 
swap1(a, b); 
printf(“\nAfter swapping by swap1 : a=%d, b=%d”, a,b); 
swap2(&a, &b); 
printf(“\nAfter swapping by swap2 : a=%d, b=%d”, a,b); 

} 
 
void swap1( int x, int y) 
{ 
 int temp; 
 temp = x; 
 x = y; 
 y = temp; 
} 
 
void swap2( int *ptr1, int *ptr2) 
{ 
 int temp; 
 temp = *ptr1; 
 *ptr1 = *ptr2; 
 *ptr2 = temp; 
} 
 
 



 144 

2. Sample program 
/* Program to  allocate memory for n integers dynamically*/ 
#include <stdlib.h> 
void main() 
{ 

int *p, n,i; 
printf(“How many elements :”); 
scanf(“%d”,&n); 
 
p = (int *)malloc(n*sizeof(int)); 
/* Accepting data */ 
for(i=0; i<n;i++) 
    scanf(”%d”,p+i); 
 
/* Displaying data */ 
for(i=0; i<n;i++) 
    printf(”%d\t”,*(p+i)); 

} 
 
 

 
�  1. Type the sample program 1 given above, execute it and write the output.  

�  2. Sample program 2 allocates memory dynamically for n integers and accepts and displays the 
values. Type the sample program 2 given above, execute it. Modify the program to allocate 
memory such that the allocated memory is initialized to 0. 

 
Set A . Write C programs for the following problems . 
 
�  1.  Write a function which takes hours, minutes and seconds as parameters and an integer s 
and increments the time by s seconds. Accept time and seconds in main and Display the new 
time in main using the above function.   
 
�  2.  Write a program to display the elements of an array containing n integers in the reverse 
order using a pointer to the array. 
 
�  3.  Write a program to allocate memory dynamically for n integers such that the memory is 
initialized to 0. Accept the data from the user and find the range of the data elements.  
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set B . Write C programs for the following problems . 
�  1.  Accept n integers in array A. Pass this array and two counter variables to a function which 
will set the first counter to the total number of even values in the array and the other to the total 
number of odd values. Display these counts in main. (Hint: Pass the addresses of the counters to 
the function) 
 
�  2.  Write a function which accepts a number and three flags as parameters. If the number is 
even, set the first flag to 1. If the number is prime, set the second flag to 1. If the number is 
divisible by 3 or 7, set the third flag to 1. In main, accept an integer and use this function to check 
if it is even, prime and divisible by 3 or 7. (Hint : pass the addresses of flags to the function) 
 
 

Signature of the instructor   
 

Date  
 

/       /           



 145 

 
Set C.  Write programs to solve the following probl ems 
 
�  1.  Accept the number of rows (m) and columns (n) for a matrix and dynamically allocate 
memory for the matrix. Accept and display the matrix using pointers. Hint: Use an array of 
pointers. 
  

 
 
�  2.  There are 5 students numbered 1 to 5. Each student appears for different number of 
subjects in an exam. Accept the number of subjects for each student and then accept the marks 
for each subject. For each student, calculate the percentage and display. (Hint: Use array of 5 
pointers and use dynamic memory allocation)  
  
 

Signature of the instructor   
 

Date  
 

/       /           

 
 

Assignment Evaluation                                     Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  
 
 

m pointers 

n integers 



 146 

 
Exercise 12   Start Date  

    

      /      / 
 

 
To demonstrate strings in C. 
 

 
You should read the following topics before starting this exercise 
1. String literals 
2. Declaration and definition of string variables 
3. The NULL character 
4. Accepting and displaying strings 
5. String handling functions 

 
A string is an array of characters terminated by a special character called NULL character(\0). 
Each character is stored in 1 byte as its ASCII code.  
 
Actions Involving 
strings 

Explanation  Example  

Declaring Strings  char message[80]; 
Initializing Strings  char message[]= {  ’H’, ’e’, ’l’, ’l’, 

’o’, ’\0’ } ; 
char message [ ] = “Hello”; 
 

Accepting Strings scanf and gets can be used 
to accept strings 

char name[20], address[50]; 
printf(“\n Enter your name :); 
scanf(“%s”, name); 
printf(“\n Enter your address :); 
gets(address); 
 

Displaying Strings printf and puts can be used to 
display strings. 

printf(“\n The  name is %s:”, 
name); 
printf(“\n The address is :”); 
puts(address); 
 

String functions All string operations are 
performed using functions in 
“string.h”. Some of the most 
commonly used functions are  
a. strlen – Returns the 

number of characters in 
the string (excluding \0) 

b. strcpy – Copies one 
string to another 

c. strcmp – Compares two 
strings. Returns 0 (equal), 
+ve (first string > 
second), -ve (first string < 
second ). It is case 
sensitive 

d. strcmpi – Same as 
strcmp but ignores case 

e. strcat – Concatenates the 
second string to the first. 

#include <string.h> 
main( ) 
{ 
char str1[50], str2[50],str3[100]; 
printf(“\n Give the first string:”); 
gets(str1); 
printf(“\n Give the second string 
string:”); 
gets(str2); 
if (strlen(str1) == strlen(str2) 
{strcpy(str3, strrev(str1)); 
 strcat(str3, strupr(str2)); 
 puts(strupr(str3)); 
} 
else  
   puts(strlwr(str2); 
} 
 
 



 147 

Returns the concatenated 
string. 

f. strrev – Reverses a string 
and returns the reversed 
string. 

g. strupr – Converts a string 
to uppercase. 

h. strlwr - Converts a string 
to lowercase 

 
 
Sample program : 
The following program demonstrates how to pass two strings to a user defined function and copy 
one string to other using pointers 
void string_copy (char *t,char *s) 
{ 
 while (*s !=’\0’)  /* while source string does not end */ 
 { *t=*s; 
  s++; 
  t++; 
 } 
 *t =’\0’;  /* terminate target string */ 
} 
 
void main() 
{ 
 char str1[20], str2[20]; 
 printf(“Enter a string :”); 
 gets(str1); 
 string_copy(str2, str1); 
 printf(“The copied string is :”); 
 puts(str2); 
} 
 

 
�  1. Write a program to accept two strings str1 and str2. Compare them. If they are equal, display 
their length. If str1 < str2, concatenate str1 and the reversed str2 into str3.  If str1 > str2, convert 
str1 to uppercase and str2 to lowercase and display. Refer sample code for string functions 
above. 
�  2. Type the sample program above and execute it. Modify the program to copy the characters 
after reversing the case. (Hint: First check the case of the character and then reverse it) 

 

Signature of the instructor   
 

Date  
 

/       /           

 

 
Set A . Write C programs for the following problems . 
 
�  1.  Write a menu driven program to perform the following operations on strings using standard 
library functions: 
 �  Length �  Copy  �  Concatenation �  Compare 

�  Reverse �  Uppercase �  Lowercase  �  Check case 
 
�  2.  Write a program that will accept a string and character to search. The program will 
call a function, which will search for the occurrence position of the character in the 



 148 

string and return its position. Function should return –1 if the character is not found in 
the string. 
 
�  3.  A palindrome is a string that reads the same-forward and reverse.  Example: “madam” is a 
Palindrome. Write a function which accepts a string and returns 1 if the string is a palindrome and 
0 otherwise. Use this function in main.  
 
�  4.  For the following standard functions, write corresponding user defined functions and write a 
menu driven program to use them. strcat, strcmp, strrev, strupr 
 
�  5.  Write a program which accepts a sentence from the user and alters it as follows: 
Every space is replaced by *, case of all alphabets is reversed, digits are replaced by ? 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set B . Write C programs for the following problems . 
 
�  1.  Write a menu driven program which performs the following operations on strings. Write a 
separate function for each option. Use pointers 
 i.  Check if one string is a substring of another. 
 ii. Count number of occurrences of a character in the string. 
 iii. Replace all occurrences of a character by another. 
 
�  2.  Write a program in C to reverse each word in a sentence.  
 
�  3.  Write a function which displays a string in the reverse order. (Use recursion) 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 
Set C.  Write programs to solve the following probl ems 
 
�  1.  Write a program that accepts a sentence and returns the sentence with all the extra 
spaces trimmed off. (In a sentence, words need to be separated by only one space; if 
any two words are separated by more than one space, remove extra spaces) 
 
�  2.  Write a program that accepts a string and displays it in the shape of a kite. Example: “abcd” 
will be displayed as : 

 aa
abab

abcabc
abcdabcd
abcabc
abab
aa

  

 
�  3.  Write a program that accepts a string and generates all its permutations. For example: ABC, 
ACB, BAC, BCA, CAB, CBA 
 
�  4.  Write a program to display a histogram of the frequencies of different characters in a 
sentence. Note: The histogram can be displayed as horizontal bars constructed using * character. 
Example: this is a single string 



 149 

 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 

Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  
 
 
 

t 

i 

h 

s 

a 

n 

g 

l 
e 

* 

* 

* 

* 

* 

* 
 
* 
* 

* 

* 

* 

 
 

* 

* * 

* 

* * 

* 

* 

r * 



 150 

 
Exercise 13   Start Date  

    

      /      / 
 

 
To demonstrate array of Strings. 

 
You should read the following topics before starting this exercise 
1. How to declare and initialize strings. 
2. String handling functions 
3. How to create and access an array of strings. 
4. Dynamic memory allocation 

 
An array of strings is a two dimensional array of characters.  It can be treated as a 1-D array such 
that each array element is a string. 

Actions Involving 
array of strings 

Explanation  Example  

Declaring String array char 
array[size1][size2]; 

char cities[4][10]  

Initializing String array  char cities[4][10]  = { “Pune”, “Mumbai”, 
“Delhi”, “Chennai”}; 

 
Sample program- 
The following program illustrates how to accept ‘n’ names , store them in an array of strings and 
search for a specific name.   

/* Program to search for name from array */ 
#include <stdio.h> 
void main( ) 
{ 
          char list[10][20];  /*list is an array of 10 strings */ 
          char name[20]; 
          int i,n; 
          printf(“\n How many names ?:”); 
          scanf(“%d”, &n); 
          for (i=0;i<n; i++) 
 {  

printf(“\n Enter name %d,”i); 
  scanf(“%s”, list[i]);   
 } 
          printf(“\n The names in the list are : \n”); 
          for (i=0; i<n; i++) 
  printf(”%s”, list[i]); 
          printf(“\n Enter the name to be searched “); 
          scanf(“%s”, name); 
          for (i=0; i<n; i++) 
 if(strcmp(list[i],name)==0) 
                   { 
                      printf(“Match found at position %d”, i); 
                      break; 
                   } 
          if(i==n) 
           printf(“Name is not found in the list”); 
} 

 



 151 

 
1. Type the above sample program and execute the same for different inputs. 
 

Signature of the instructor   
 

Date  
 

/       /           

 

 
Set A . Write C programs for the following problems . 
 
�  1.  Write a program that accepts n words and outputs them in dictionary order. 
�  2.  Write a program that accepts n strings and displays the longest string. 
�  3.  Write a program that accepts a sentence and splits the sentence into words. Sort each word 
and reconstruct the sentence. 
Input – this is a string  Output – hist is a ginrst  
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set B . Write C programs for the following problems . 
 
�  1.  Write a function, which displays a given number in words.  
For Example: 129 One Hundred Twenty Nine 
  2019 Two Thousand Nineteen  
�  2.  Define two constant arrays of strings, one containing country names (ex: India, France etc) 
and the other containing their capitals. (ex: Delhi, Paris etc). Note that country names and capital 
names have a one-one correspondence. Accept a country name from the user and display its 
capital. Example:  Input: India , Output:  Delhi. 
  

Signature of the instructor   
 

Date  
 

/       /           

 
Set C.  Write programs to solve the following probl ems 
 
�  1.  Create a mini dictionary of your own. Each entry in the dictionary contains three parts (word, 
its meaning, similar word). The entries are stored in the sorted order of words.  Write a menu 
driven program, which performs the following operations.  
 i. Add a new word (Insert new word and its details in the correct position) 
 ii. Dictionary look-up 
 iii. Find similar word 
 iv. Delete word 
 v. Display All words starting with a specific alphabet (along with their meaning). 
 
(Hint: Use 2-D array of strings having n rows and 3 columns) 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  
 



 152 

 
Exercise 14   Start Date  

    

      /      / 
 

 
Assignment to demonstrate bitwise operators. 
 

 
You should read the following topics before starting this exercise 
1. Bitwise operators and their usage ( &, |, ^, ~, <<, >>) 
 

 
1. Bitwise operators: C provides 6 operators to perform operations on bits. These operators 
operate on integer and character but not the float and double. Ones complement operator (~) is 
unary while the others are binary. 
 

Operator Purpose 
 
Example 
 

~ 
One’s 
complement 

~a : Complements each bit of variable a 

>> Right shift a=a>>1; Shifts bits of a one position to the right 
<< Left Shift a=a<<n; Shifts bits of a n positions to the left 

& Bitwise AND a = b&c;  performs bitwise AND on b and c 
a = a&0xFF00;  Masks the lower order 8 bits of a 

| Bitwise OR a = a!b; performs bitwise OR on b and c 

^ Bitwise XOR 
x = x^y; y=x^y; x=x^y; Swaps x and y by 
performing bitwise XOR. 

   
Sample code:  The following function accepts an integer argument and displays it in binary 
format. It uses shift operator and AND masking. 
 

void displaybits(unsigned int n) 
{ 
    unsigned int mask = 32768; 
   /*set MSB of mask to 1 */ 
   while (mask>0) 
   { 
      if((n&mask)==0) 
            printf(“0”); 
     else 
           printf(“1”); 
     mask = mask >>1; /* shift mask right */ 
} 
 

 

 
�  1.   Write a program to accept n integers and display them in binary. Use the function given 
above.   
 

Signature of the instructor   
 

Date  
 

/       /           

 



 153 

 
 
Set A . Write C programs for the following problems . 
 
�  1.  Write a program to accept 2 integers and perform bitwise AND, OR, XOR and Complement. 
Display the inputs and results in binary format. Use the function in the above exercise. 
 
�  2.  Write a program to swap two variables without using a temporary variable. (Hint: Use XOR) 
 
�  3.  Write a program which accepts two integers x and y and performs x<<y and x>>y. Display 
the result in binary.  
 

 
Signature of the instructor   

 
Date  

 

/       /           

 
Set B . Write C programs for the following problems . 
 
�  1.  Write functions to calculate the size of an integer, character, long and short integer using 
bitwise operators. Store their declaration in file “myfunctions.h” and their definitions in file 
“myfunctions.c”. Include these files in your program and use these functions to display the size of 
each.    
 
�  2.  Write a program to perform the following operations on an unsigned integer using bitwise 
operators and display the result in hexadecimal format. 
 i. Swap the ____ and ____ nibble ( 4 bits) 
 ii. Remove the lower order nibbles from the number.  

For example: Input: A3F1 Output 00A3 
 iii. Reverse the nibbles  

For example: Input: A3F1 Output 1F3A 
 
�  3.  Write a program which accepts an integer and checks whether it is a power of 2.  
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set C.  Write programs to solve the following probl ems 
 
�  1.  Write a program to add, subtract, multiply and divide two integers using bitwise operators. 
�  2.  Packing and Unpacking Data: A date consists of three parts : day, month, year. To store this 
information, we would require 3 integers. However, day and month can take only limited values. 
Hence, we can store all three in a single integer variable by packing bits together. If we are using 
the dd-mm-yy format, the date will be stored in memory as an unsigned integer (16 bits) in the 
following format. Year (Bits 15-9), Month (bits 8 – 5), Day (Bits 4 - 0). 
  

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
y y y y y y y m m m m d d d d d 

hour Month day 

 
Accept day, month and year from the user and pack them into a single unsigned int. Unpack and 
display them in the binary format. (Hint: for packing, use: 512 * year + 32 * month + day ) 
The output should be: 
Enter the date, month and year –dd mm yy :  
31 12  89 
Packed date = 1011001110011111 
Day = 31 
0000000000011111 



 154 

Month = 12 
0000000000001100 
Year = 89 
0000000001011001 
 
�  3.  Packing and Unpacking Data: Time consists of three parts : hours, minutes, seconds. To 
store this information, we would require 3 integers. However, all these three variable take only 
limited values. Hence, we can store all three in a single integer variable by packing bits together. 
Time being 0 to 23 hours, it will require maximum 5 bits, minutes being 0 to 59 will require 6 bits. 
The two together take up 11 bits. The remaining 5 bits cannot store seconds which are also in the 
range 0 to 59 hence we store double seconds which are in the range 0 to 29  
 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
h h h h h m m m m m m ds ds ds ds ds 
                  hour                      Minutes              Double seconds 

 
Accept hour, minute and double seconds from the user and pack them into a single unsigned int. 
Unpack and display them in the binary format.  
The output should be: 
Enter the hour, minutes and double seconds –hh mm ss :  
07 12  20 
Packed date = 0011100110010100 
Hour = 07 
0000000000000111 
Minutes = 12 
0000000000001100 
Double seconds = 20 
0000000000010100 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 

Assignment Evaluation                                    Signature  
 

 0: Not done    2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  
 

 



 155 

 
Exercise 15   Start Date  

    

      /      / 
 

 
Structures in C 
 

 
You should read the following topics before starting this exercise 
1. Concept of structure 
2. Declaring a structure 
3. Accessing structure members  
4. Array of structures 
5. Pointer to a structure. 
6. Passing structures to functions 
 

 
A structure is a composition of variables possibly of different data types, grouped together under a 
single name.  Each variable within the structure is called a ‘member’. 
 
Operations 
performed 

Syntax / Description Example 

Declaring a structure struct structure-name  
{ 
 type member-1 ; 
 type member-2; 
 . 
 . 
 type member-n ; 
}; 

struct student 
{ 
 char name[20]; 
 int rollno; 
 int marks;  
}; 

Creating structure 
variables 

struct structurename variable;  
 

struct student stud1;  
 

Accessing structure 
members 

variable.member stud1.name 
stud1.rollno 
stud1.marks 
 

initializing a structure 
variable 

the initialization values have to be 
given in {} and in order 
 

struct student stud1 = 
{“ABCD”,10,95}; 

Pointer to a structure struct structure-name * pointer-
name; 
 

struct student *ptr; 
   ptr = &stud1; 

Accessing members 
using Pointer 

pointer-name -> member-name; 
 

ptr->name; ptr->rollno; 
 

Array of structures struct structure-name array-
name[size]; 

struct student stud[10]; 

passing Structures to 
Functions 

return-type function-name ( struct 
structure-name variable); 
 

void display(struct student s); 
 

pass an array of 
structures to a function 

return-type function-name ( struct 
structure-name array[size]); 
 

void display(struct student 
stud[10]); 

 



 156 

Sample Code : 
 
/* Program for student structure  */ 
 
#include<stdio.h> 
struct student 
{ char name[20]; 
 int rollno; 
 int marks[3]; 
             float perc; 
};  
void main( ) 
{ 
             int i, sum j; 
             struct student s[10]; 
 printf(“\n Enter the details of the 10 students \n”); 
 for (i=0;i<10;i++) 
             {  
                      printf(“\n Enter the name and roll number \n”); 
                      scanf(“%s%d”,s[i].name, &s[i].rollno); 
                      printf(“\n Enter marks for three subjects:”); 
                      sum = 0 ;  
          for { j=0;j<3;j++) 
          {  
                                       scanf(“%d”,&s[i].marks[j]); 
   sum  = sum + s[i].marks[j]; 
           } 
           s[i].perc = (float)sum/3; 
             } 
             /* Display details of students */ 
 printf(“\n\n Name \t Roll no\t Percentage”); 
 printf(“\n================================\n”); 
 for(i=0;i<10;i++) 
 { 
                       printf(“\n%s\t%d\t%f”,s[i].name,s[i].rollno,s[i].perc); 
 } 
} 
 

 
1. The program in Sample code 1 demonstrates an array of structures of the type student. Type 
the above program and run it. Modify the program to display the details of the student having the 
highest percentage. 
 

Signature of the instructor   
 

Date  
 

/       /           

 

 
Set A . Write C programs for the following problems . 
�  1.  Create a structure student (roll number, name, marks of 3 subjects, percentage). Accept 
details of n students and write a menu driven program to perform the following operations. Write 
separate functions for the different options.  

i) Search  
ii) Modify 
iii)   Display all student details 
iv) Display all student having percentage > _____ 
v) Display student having maximum percentage 



 157 

�  2.  Create a structure employee (id, name, salary). Accept details of n employees and write a 
menu driven program to perform the following operations. Write separate functions for the 
different options.  

i) Search by name 
ii) Search by id 
iii) Display all  
iv) Display all employees having salary > _____ 
v) Display employee having maximum salary 

Instructor should fill in the blanks with appropriate values. 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set B . Write C programs for the following problems . 
 
�  1.  Create a structure having the following fields: 
Structure name: _______ 
Fields: ________, _______, _______, ________, _______, _______ 
 Accept details of n variables of the above structure and write a menu driven program to perform 
the following operations. Write separate functions for the different options.  

i) ______ ii) _________ iii) __________  iv) __________ 
 
�  2.  Create a structure Fraction (numerator, denominator). Accept details of n fractions and write 
a menu driven program to perform the following operations. Write separate functions for the 
different options. Use dynamic memory allocation. Note:  While accepting fractions, store the 
fractions in the reduced form.  

i) Display the largest fraction  
ii) Display the smallest fraction 
iii) Sort fractions  
iv) Display all  
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set C.  Write programs to solve the following probl ems 
�  1.  Accept book details of ‘n’ books viz, book title, author, publisher and cost.  Assign an 

accession numbers to each book in increasing order.  (Use dynamic memory allocation). 
Write a menu driven program for the following options. 
i. Books of a specific author 
ii. Books by a specific publisher 
iii. All books having cost >=  _____ . 
iv. Information about a particular book (accept the title) 
v. All books. 

 
�  2.  The government of a state wants to collect census information for each city and store the 
following information : city name, population of the city, literacy percentage. After collecting data 
for all cities in the state, the government wants to view the data according to : 
 i. Literacy level 
 ii. Population 
 iii. Details of a specific city. 
Write a C program using structures and dynamic memory allocation.   
 

Signature of the instructor   
 

Date  
 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement    5: Well Done  



 158 

 
Exercise 16   Start Date  

    

      /      / 
 

 

 
Nested Structures and Unions 
 

 
You should read the following topics before starting this exercise 
1. Creating and accessing structures 
2. Array of structures 
3. Dynamic memory allocation 
4. Structure within a structure 
5. Creating and accessing unions 
 

 
 
Nested structures: The individual members of a structure can be other structures as well.  This is 
called nesting of structures. 
 
Operations 
performed 

Syntax Example 

Creating a nested 
structure 

struct structure1  
{ 
 . . . 
 struct structure2 
      { 
          . . . 
 } variable; 
 . . .  
}; 
 
Method 2 
struct structure2 
{ 
    . . . 
}; 
 
struct structure1  
{ 
 . . . 
 struct structure2 
variable; 
      . . . 
}; 

struct student  
{ 
 int rollno; char name[20]; 
 struct date 
      { 
        int dd, mm, yy;   
 } bdate, admdate; 
}; 
 
 
struct date 
{ 
  int dd, mm, yy;   
}; 
 
struct student  
{ 
  int rollno; char name[20]; 
  struct date bdate, admdate;  
}; 

Accessing nested 
structure members 

nested structure members can 
be accessed using the (.) 
operator repeatedly.  

stud1.bdate.dd, stud1.bdate.mm  
 

self referential 
structure 

A structure containing a pointer 
to the same structure 

struct node 
{ 
    int info; 
    struct node *next; 



 159 

}; 
Unions A union is a variable that 

contains multiple members of 
possibly different data types 
grouped together under a single 
name.  However, only one of 
the members can be used at a 
time. They occupy the same 
memory area.    

union u 
{ 
    char a; 
    int b; 
}; 
 

 
Sample Code 1:  
Example: The following structure is for a library book with the following details : id, title, publisher,  
code ( 1 – Text book, 2 – Magazine, 3 – Reference book). If the code is 1, store  no-of-copies. If 
code = 2, store the issue month name. If code = 3, store edition number. Also store the cost.  
 
/* Program for demonstrating structure and union  */ 
 
struct library_book 
{  
 int id; 
            char title[80],publisher[20] ; 
 int code; 
 union u 
 { 
  int no_of_copies; 
  char month[10]; 
  int edition; 
 }info; 
 int cost; 
}; 
void main( ) 
{ 
struct library_book book1; 
printf(“\n Enter the details of the book \n”); 
   
printf(“\n Enter the id, title and publisher \n”); 
scanf(“%d%s%s”,&book1.id, book1.title, book1.publisher); 
printf(“\n Enter the code: 1-Text Book, 2-Magazine, 3-Reference”); 
 scanf(“%d”,book1.code); 
switch(book1.code) 
{ 
 case 1: printf(“Enter the number of copies :”); 
   scanf(“%d”,&book1.info.no_of_copies); 
   break; 
       case 2: printf(“Enter the issue month name :”); 
   scanf(“%s”,book1.info.month); 
   break; 
       case 3: printf(“Enter the edition number:”); 
   scanf(“%d”,&book1.info.edition); 
   break; 
} 
printf(“Enter the cost :”); 
scanf(“%d”,&book1.cost); 
    
/* Display details of book */ 
printf(“\n id = %d”, book1.id); 



 160 

printf(“\n Title = %s”, book1.title); 
printf(“\n Publisher = %s”, book1.publisher); 
switch(book1.code) 
{ 
     case 1:         printf(“Copies = %d:”, book1.info.no_of_copies); 
   break; 
      case 2: printf(“Issue month name = %s”,book1.info.month); 
   break; 
      case 3: printf(“Edition number =%d:”,book1.info.edition); 
   break; 
} 
printf(“\n Cost = %d”, book1.cost); 
} 

 
Sample Code 2:  
A linked list is a collection of data elements which are linked to one another by using pointers i.e. 
the every node stores the address of the next node. The advantage of using a linked list over an 
array is that it is easy to insert and delete elements from the list.  
To create a linked list, we have to use a self referential structure (See table above). Each element 
of the list is called a node. 

list

node node node node

info   next info   next info    next info   next 

NULL

 
To create a node, we have to allocate memory dynamically. The following program creates 5 
nodes , stores the numbers 1…5 in them and displays the data. 
 
/* Program to create a linked list  of 5 nodes */ 
 
#include <stdio.h> 
struct node 
{ 
    int info; 
    struct node *next; 
}; 
struct node *list = NULL;   /* list is a pointer to the linked list */ 
 
void createlist() 
{ 
   struct node *temp, *p; 
   int i; 
   for(i=1;i<=5;i++) 
   { 
       p=(struct node *)malloc(sizeof(struct node));  /* create a node */ 
       p->info = i; 
       p->next=NULL; 
      if(list == NULL) 
            list=temp=p;   /* list points to the first node */ 
      else 
      { 
           temp->next=p;  /* link new node to the last */ 
           temp=p; 
      } 
} 
void displaylist() 
{ 
   struct node *temp; 



 161 

   for(temp=list; temp!=NULL; temp=temp->next)  /* use a temporary pointer */ 
        printf(%d \t”, temp->info); 
} 
 
void main( ) 
{ 
 createlist(); 
 displaylist(); 
} 
 
 

 

 
 
� 1. The sample code 1 given above demonstrates how we can create a variable of the above 
structure and accept and display details of 1 book. Type the program and execute it. Modify the 
program to accept and display details of n books. 
 
� 2. The sample code 2 given above demonstrates how we can create a linked list and traverse 
the list. Type the program and execute it. Modify the displaylist function to display only the even 
numbers from the list.  
 

Signature of the instructor   
 

Date  
 

/       /           

 

 
 
Set A . Write C programs for the following problems . 
 
�  1.  Modify the sample program 1 above to accept details for n books and write a menu driven 
program for the following:   
 

�  i)  Display all text books 
�  ii)  Search Text Book according to Title 
�   iii) Find the total cost of all books (Hint: Use no_of_copies). 
   

�  2.  Modify the sample program 1 to accept details for n books and write a menu driven program 
for the following:   
 

�  i)  Display all magazines 
�   ii) Display magazine details for specific month. 
�   iii) Find the “costliest” magazine. 
  

�  3.  Modify the sample program 1 to accept details for n books and write a menu driven program 
for the following:   
 

�  i)  Display all reference books 
�   ii) Find the total number of reference books  
�   iii) Display the edition of a specific reference book.  

 
 

Signature of the instructor   
 

Date  
 

/       /           



 162 

 
Set B.  Write programs to solve the following probl ems 
 
�  1.  Create a structure named ________having the following fields: 

Field name Description 
  
  
  
  
  

 
  Write a menu driven program to perform the following operations : 
  i)  _________   ii)  _________  iii)  _________  iv)  _________  v) _________ 
 
 
�  2.  Write a program to create a linked list of n nodes and accept data from the user for each 
node. Display the list. Accept a number from the user and search for the element in the list.  

  
Signature of the instructor   

 
Date  

 

/       /           

 
Set C.  Write programs to solve the following probl ems 
 
�  1.  A shop sells electronic items. Each item has an id, company name, code (1-TV, 2-Mobile 

phones, 3-Camera) and cost.  The following additional details are stored for each item.  
• TV - size, type (  CRT-1 / LCD- 2 / Plasma-3)   
• Mobile Phone - type ( GSM – 1 / CDMA – 2) , model number. 
• Camera – resolution, model number. 

The shop wants to maintain a list of all items and perform the following operations for each of the 
item types: 

  i) Display all  
  ii) Search for specific item 
  iii) Sort according to cost 

 
�  2.  Write a program to create a linked list of n nodes and accept data from the user for each 
node. Write a menu driven program to perform the following operations: 

i) Display the list  
  ii) Search for specific number 
  iii) Display the element after ____ 

iv) Find the maximum / minimum 
 

  
Signature of the instructor   

 
Date  

 

/       /           

 
 
 

Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  
 
 



 163 

 
Exercise 17   Start D ate 

    

      /      / 
 

 

 
Assignment to demonstrate command line arguments an d  preprocessor directives . 
 

 
You should read the following topics before starting this exercise 

1. Passing arguments from the command line to main 
2. Accessing command line arguments 
3. File inclusion, macro substitution and conditional compilation directives. 
4. Argumented and Nested macros 

 

 
 

Preprocessor 
directives 

They begin with a # which must 
be the first non-space character 
on the line.   
They do not end with a 
semicolon.   

 

Macro Substitution 
Directive 

# define MACRO  value # define  PI  3.142 
 

Argumented 
macro 

# define MACRO(argument)  
value 

# define SQR(x)  x*x 
#define LARGER(x,y) ((x)>(y)?(x):(y)) 

 
Nested macro one macro using another #define CUBE(x) (SQUARE(x)*(x)) 

 
File Inclusion 
directive 

#include <filename>   
 #include “filename”   

#include <stdio.h>  

Conditional 
Compilation 
directive 

# if, # else, # elif, # endif  #ifdef #ifdef PI 
   #undef PI 
#endif 

Command Line 
Arguments 

int argc - argument counter 
char *argv[]-argument vector 

void main(int argc, char *argv[]) 
{  
printf(“There are %d arguments in all”, 
argc); 
for (i=0; i<argc; i++) 
  printf(”Argument %d =%s”,i,argv[i]); 
} 
 

To run a program 
using command 
line arguments 

Compile the program using cc 
Execute the program using 
a.out followed by command line 
arguments 
 

Example: a.out ABC 20 
Here, ABC and 20 are the two command 
line arguments which are stored in the 
form of strings. To use 20 as an integer, 
use function atoi .  
Example: int num = atoi(argv[2]); 
 

 



 164 

Sample Code 1 
  

/* Program for argumented macros  */ 
 
#define  INRANGE(m)   ( m >= 1 && m<=12) 
#define NEGATIVE(m)  (m<0) 
#define ISLOWER(c)  (c>=’a’&&c<=’z’) 
#define ISUPPER(c)  (c>=’A’&&c<=’Z’) 
#define ISALPHA(c)  (ISUPPER(c)||ISLOWER(c)) 
#define ISDIGIT(c)  (c>=’0’&&c<=’9’) 
 
void main() 
{ 
   int m; char c; 
   printf(“Enter an integer corresponding to the month”); 
   scanf(“%d”,&m); 
   if(NEGATIVE(m)) 
       printf(“Enter a positive number”); 
   else 
   if(INRANGE(m)) 
       printf(“You Entered a valid month”); 
 
   printf(“Enter a character :”); 
   c=getchar(); 
   if(ISAPLHA(c)) 
       printf(“You entered an alphabet”); 
   else 
   if(ISDIGIT(c)) 
       printf(“You Entered a digit”); 
} 
 

 

 
 
� 1. Write a program to display all command line arguments passed to main in the reverse order. 
Hint: See table above.  
 
� 2. Sample code 1 above demonstrates the use of argumented and nested macros. Type the 
program and execute it.  
 

Signature of the instructor   
 

Date  
 

/       /           

 

 
 
Set A . Write C programs for the following problems . 
 
�  1.  Write a program to accept three integers as command line arguments and find the minimum, 
maximum and average of the three. Display error message if invalid number of arguments are 
entered. 
 
�  2.  Write a program which accepts a string and two characters as command line arguments and 
replace all occurrences of the first character by the second.  
 



 165 

�  3.  Define a macro EQUALINT which compares two parameters x and y and gives 1 if equal 
and 0 otherwise. Use this macro to accept pairs of integers from the user. Calculate the sum of 
digits of both and continue till the user enters a pair whose sum of digits is not equal.  
 
�  4.  Define a macro EQUALSTR which compares two strings x and y and gives 1 if equal and 0 
otherwise. Use this macro to accept two strings from the user and check if they are equal.  
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set B . Write C programs for the following problems . 
 
�  1.  Write a program to accept two strings as command line arguments and display the union 
and intersection of the strings. If the user enters invalid number of arguments, display appropriate 
message. 
 
�  2.  Write a program which accepts a string and an integer (0 or 1) as command line arguments. 
If the integer entered is 0, sort the string alphabetically in the ascending order and if it is 1, sort it 
in the descending order. If the user enters invalid number of arguments, display appropriate 
message. (Hint – use atoi) 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 
Set C . Write C programs for the following problems . 
 
�  1.  Create a header file “mymacros.h” which defines the following macros.  
i. SQR(x)  ii. CUBE(x) - nested iii. GREATER2(x,y) iv. GREATER3 (x,y,z) – nested 

v. FLAG ( value = 1) (which may or may not be defined) 
 
Include this file in your program. Write a menu driven program to use macros SQR, CUBE, 
GREATER2 and GREATER3. Your program should run the first two macros if the macro called 
FLAG has been defined. If it is not defined, execute the other two macros. Run the program twice 
– with FLAG defined and with FLAG not defined.  
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 

Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  
 
 
 
 
 



 166 

 
Exercise 18   Start Date  

    

      /      / 
 

 

 
To demonstrate text files using C 
 

 
You should read the following topics before starting this exercise 

1. Concept of streams 
2. Declaring a file pointer 
3. Opening and closing a file 
4. Reading and Writing to a text file 
5. Command line arguments 

 

 
Operations 
performed 

Syntax Example 

Declaring File pointer FILE * pointer; FILE *fp; 
Opening a File fopen(“filename”,mode); 

where mode = “r”, “w”, 
“a”, “r+”, “w+”, “a+” 

fp=fopen(“a.txt”, “r”); 
 

Checking for 
successful open 

if (pointer==NULL) if(fp==NULL) 
  exit(0); 

Checking for end of file feof if(feof(fp)) 
   printf(“File has ended”); 

Closing a File fclose(pointer); 
fcloseall();    

fclose(fp); 
 

Character I/O fgetc, fscanf 
fputc, fprintf 

ch=fgetc(fp); 
fscanf(fp, ”%c”,&ch); 
fputc(fp,ch); 

String I/O  fgets, fscanf 
fputs, fprintf 

fgets(fp,str,80); 
fscanf(fp, ”%s”,str); 

Reading and writing 
formatted data 

fscanf 
fprintf 

fscanf(fp, ”%d%s”,&num,str); 
fprintf(fp, “%d\t%s\n”, num, str); 

Random access to 
files 

ftell, fseek, rewind fseek(fp,0,SEEK_END); /* end of file*/ 
long int size = ftell(fp);  

 
Sample Code 1   
The following program reads the contents of file named a.txt and displays its contents on the 
screen with the case of each character reversed. 
/* Program revrese case of characters in a file  */ 
 
#include <stdio.h> 
#include <ctype.h> 
void main() 
{ 
 FILE * fp; 
 fp = fopen(“a.txt”, “r”); 
 if(fp==NULL) 
 { 
  printf(“File opening error”); 



 167 

  exit(0); 
 } 
 while( !feof(fp)) 
 { 
  ch = fgetc(fp); 
                          if(isupper(ch)) 
                                  putchar(tolower(ch)); 
                         else 
                                if(islower(ch)) 
                                         putchar(toupper(ch)); 
                                else 
                                        putchar(ch); 
 } 
 fclose(fp); 
} 
 
 
Sample Code 2   
The following program displays the size of a file. The filename is passed as command line 
argument. 
 
/* Program to display size of a file */ 
 
#include <stdio.h> 
void main(int argc, char *argv[]) 
{ 
 FILE * fp; 
 long int size; 
 fp = fopen(argv[1], “r”); 
 if(fp==NULL) 
 { 
  printf(“File opening error”); 
  exit(0); 
 } 
 fseek(fp, 0, SEEK_END); /* move pointer to end of file */ 
 size = ftell(fp); 
 printf(“The file size = %ld bytes”, size); 
 fclose(fp); 
} 
 
 
Sample Code 3   
The following program writes data (name, roll number) to a file named student.txt , reads the 
written data and displays it on screen.   
 
#include <stdio.h> 
void main() 
{ 
 FILE * fp; 
 char str[20]; int num; 
 fp = fopen(“student.txt”, “w+”); 
 if(fp==NULL) 
 { 
  printf(“File opening error”); 
  exit(0); 
 } 
 fprintf(fp,“%s\t%d\n”, “ABC”, 1000); 

fprintf(fp,“%s\t%d\n”, “DEF”, 2000); 
fprintf(fp,“%s\t%d\n”, “XYZ”, 3000); 

  



 168 

 rewind(fp); 
while( !feof(fp)) 

 { 
 fscanf(fp,“%s%d”, str, &num); 
 printf(“%s\t%d\n”, str, num); 

 } 
 fclose(fp); 
} 
 
 

 
 
� 1. Create a file named a.txt using the vi editor. Type the sample program 1 given above and 
execute the program. Modify the program to accept a character from the user and count the total 
number of times character occurs in the file. 
 
�  2. Type the sample program 2 above and execute it. Modify the program to display the last n 
characters from the file.  
 
�  3. Type the sample program 3 above and execute it. Modify the program to accept details of n 
students and write them to the file. Read the file and display the contents in an appropriate 
manner.  
 

Signature of the instructor   
 

Date  
 

/       /           

 

 
Set A . Write C programs for the following problems . 
 
�  1.  Write a program to accept two filenames as command line arguments. Copy the contents of 
the first file to the second such that the case of all alphabets is reversed. 

 
�  2. Write a program to accept a filename as command line argument and count the number of 
words, lines and characters in the file.   
 
�  3.  Write a program to accept details of n students (roll number, name, percentage) and write it 
to a file named “student.txt”. Accept roll number from the user and search the student in the file. 
Also display the student details having the highest percentage.  
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set B.  Write programs to solve the following probl ems 
 
�  1.  A file named numbers.txt has a set of integers. Write a C program to read this file and 
convert the integers into words and write the integer and the words in another file named 
numwords.txt.  
Example: 
numbers.txt   numwords.txt 
 
11    Eleven 
261    Two hundred Sixty One 
9    Nine 
 
�  2.  Write a program which accepts a filename and an integer as command line arguments and 
encrypts the file using the key. (Use any encryption algorithm) 



 169 

 
Signature of the instructor   

 
Date  

 

/       /           

 
Set C . Write C programs for the following problems . 
 
�  1.  A text file contains lines of text. Write a program which removes all extra spaces from the 
file.  
 
�  2.  Write a menu driven program for a simple text editor to perform the following operations on a 
file, which contains lines of text.  
 i. Display the file 
 ii. Copy m lines from position n to p 
 iii. Delete m lines from position p 
 iv. Modify the nth line 
 v. Add n lines 
 
�  3.  Write a program which reads the contents of a C program and replaces all macros occurring 
in the program with its value. Assume only simple substitution macros (ex: #define FALSE  0 ).  
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 
 

Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  
 
 

 



 170 

 
Exercise 19   Start Date  

    

      /      / 
 

 
To demonstrate binary file handling using C. 
 

 
You should read the following topics before starting this exercise 

1. Concept of streams 
2. Declaring a file pointer 
3. Opening and closing files 
4. File opening modes 
5. Random access to files 
6. Command line arguments 

 

 
In binary files, information is written in the form of binary . All data is written and read with no 
interpretation and separation i.e. there are no  special characters to mark end of line and end of 
file.  
I/O operations on binary files 
 
Reading from a 
binary file 

fread(address,size-of-element,number 
of elements,pointer); 
 

fread (&num,sizeof(int),1,fp); 
fread 
(&emp,sizeof(emp),1,fp); 
fread(arr,sizeof(int),10,fp); 

Writing to a binary 
file 

fwrite(address,size-of-element,number 
of elements,pointer); 
 

fwrite (&num,sizeof(int),1,fp); 
fwrite 
(&emp,sizeof(emp),1,fp); 
 

 
Sample Code 
/* Program to demonstrate binary file */ 
 
struct employee 
{ char name[20];  
 float sal; 
}; 
main( ) 
{ 
 FILE *fp; 
 struct employee e; 
 int i; 
 if((fp=fopen (“employee.in”,“wb”))==NULL) 
  { printf(“Error opening file”); 
   exit( ); 
  } 
  
 for(i=0;i<5;i++) 
 { 

printf(”\n Enter the name and salary”); 
 scanf(“%s%f”,e.name,&e.sal); 
 fwrite(&e,sizeof(e),1,fp); 

 } 



 171 

fclose(fp); 
  

fp=fopen(“employee.in”,”rb”); /* reopen file */ 
 if(fp==NULL) 
 { fprintf(stderr, “Error opening file); 
 exit( ); 

} 
 for(i=0;i<5;i++) 
 { 

fread(&e,sizeof(e),1,fp); 
  printf(“\n Name = %s Salary = %f”,e.name,e.sal); 
 } 

fclose(fp); 
} 
 
 

 
 
1. Type program given above, writes data of 5 employees to a binary file and then reads the file. 
Modify the program to search an employee by name. 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 

 
 
Set A . Write C programs for the following problems . 
 
�  1.  Create a structure student (roll number, name, percentage) Write a menu driven program to 
perform the following operations on a binary file- “student.dat”. Write separate functions for the 
different options.  

1. Add a student (Note: Students should be assigned roll numbers consecutively) 
2. Search Student  

a. according to name  
b. according to roll number 

3. Display all students 
�  2.  Create a structure student (roll number, name, percentage) Write a menu driven program to 
perform the following operations on a binary file- “student.dat”. Write separate functions for the 
different options.  
 

1. Add a student (Note: Students will be assigned roll numbers consecutively) 
2. Modify details  

a. according to name  
b. according to roll number 

3. Display all students 
�  3.  Create a structure student (roll number, name, percentage). Write a menu driven program to 
perform the following operations on a binary file- “student.dat”. Write separate functions for the 
different options.  

1. Add a student (Note: Students will be assigned roll numbers consecutively) 
2. Delete student 

a. according to name  
b. according to roll number 

3. Display all students 



 172 

 
Signature of the instructor   

 
Date  

 

/       /           

 
Set B . Write C programs for the following problems . 
 
�  1.  Create two binary files such that they contain roll numbers, names and percentages.  The 
percentages are in ascending orders.  Merge these two into the third file such that the third file still 
remains sorted on percentage. Accept the three filenames as command line arguments. 
 
�  2.  Create a structure having the following fields: 
Structure name: _______ 
Fields: __________________________________________________________________ 
Store information for n variables of the above structure in a binary file. Write a menu driven 
program to perform the following operations Write separate functions for the different options.  
 

i) ______ ii) _________ iii) __________  iv) __________ 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Set C . Write C programs for the following problems . 
 
�  1.  Create a binary file which contains details of student projects namely roll number, project 
name, project guide. The first line of the file contains an integer indicating the total number of 
students. When the program starts, read all these details into an array and  perform the following 
menu driven operations. When the user selects Exit from the menu, store these details back into 
the file.  
1. Add  2. Delete 3. Search 2. Modify 3. Display all 4. Exit 
 

Signature of the instructor   
 

Date  
 

/       /           

 
 

Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  



 173 

 
Exercise 20   Start Date  

    

      /      / 
 

 

 
Problem Solving Assignment  
 

 
 
Write C programs for the following problems. 
 
1.   The calendar problem 
 
Display a calendar for a particular year. If month-number is supplied, only that month is displayed.  
 
 
2.   Large number multiplication problem 
 

Write a program that will multiply two (2) N digit positive integers, where N may be 
arbitrarily large. Your program should output the product(s).   
 
Input format : One N digit positive integer per line in input and output files.  
 
Sample Input:   
65656432310964579864321356898765432243578987876654 
94454 
 
Sample Output : 
6201512657499848426504609444515990137135009720901476916  

 
 
3. Room IDentification Problem 
 
A company has just finished construction of their new pentagon shaped office building.  However 
identifying the location of a room is a problem.  
 
Here is how the room numbering scheme works: 
 
Room numbers will be between 100 and 99999 inclusive.  The ones digit (rightmost) tells which 
side of the pentagon the room is on.  The next one after that, the tens digit, gives the hall number 
in which the room is (see table).  The digits after that give which floor the room is on. 
 

0,1 Hall 1 
2,3 Hall 2 
4,5 Hall 3 
6,7 Hall 4 
8,9 Hall 5 

 
The least significant digit (right-most) tells whether the room is on the courtyard or outside edge of 
the hall.  If it is even, the room faces the courtyard, if it is odd, it faces the outside. 
 
Input Format: The input will consist a list of room numbers not longer than 5 digits.  The input 
ends with -1. 
 
Output Format:  You will print the Room, Floor, Hall, and Side that each room number 
represents. 



 174 

 
Room r is on Floor f in Hall h facing {courtyard|outside} 
 
Example Input : 
111 
1322 
455 
512 
-1 
 
Example Output: 
Room 111 is on Floor 1 in Hall 1 facing outside 
Room 1322 is on Floor 13 in Hall 2 facing courtyard 
Room 455 is on Floor 4 in Hall 3 facing outside 
Room 512 is on Floor 5 in Hall 1 facing courtyard 
 
 
4.The Anagram Problem 
 
An anagram is a pair of words or sentences that contain the same number of the same letters.  
Examples include Dormitory whose anagram is Dirty Room.  You will write a program to 
recognize whether a pair of words or sentences are anagrams. 
 
Input: The input accept two strings and check whether they are anagrams. 
 
Output:  If a pair of strings tested are anagrams of each other, print “An Anagram,” otherwise 
print, “Not An Anagram.” 
 
Example Input 1: 
dormitory 
dirtyroom 
 
Output: 
An Anagram 
 
Example Input 2: 
eleven plus two 
twelve plus one  
 
Output: 
An Anagram 
 
Example Input 3: 
thisisntananagram 
andthatissuchashame 
 
Output: 
Not An Anagram 
 
 
5. The Secret Word problem : 
 
You have determined that the enemy is using the following mechanism to encode secret words.   
You believe that the first letters of each word in enemy messages form secret words.  Only the 
first letters of consecutive words are used to form the secret words.  Further, a sentence may 
contain other words before and/or after the actual words that make up the secret word.  
Messages always contain a single space between words. 
 



 175 

Write a program that takes a secret word and a message as input and determines if the message 
contains the secret word.  The program should not be case-sensitive and should ignore 
punctuation. 
 
Input Format:  The first line of input consists of the secret word.  The second line contains the 
sentence to check. 
 
Output Format:  The output will be “Secret word found” if the secret word is found in the 
sentence, otherwise, output “Secret word not found.” 
 
Input: 
year 
the yellow elephant ate raw bananas 
Output: 
Secret word found 
  
Input: 
you 
you will often fail unless you try harder 
Output: 
Secret word not found 
 
 
6. The Credit Card Verification Problem 
 
You are provided with a credit card number with the length varying from 13 digits to 16 digits.  
Each digit of the credit card is weighted by either 2 or 1.  The credit card number must be zero-
filled on the left to create a sixteen digit number, and then the pattern starts with 2, alternating 
with a 1.  If the number multiplied by the weight results in a 2-digit number, each digit is added to 
the sum.  The final sum with the check digit should be a multiple of 10. 
 
Example:  

5 4 9 9 0 0 1 1 0 0 1 2 0 0 3 4  

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1  

1+0 +4 +1+8 +9 +0 +0 +2 +1 +0 +0 +2 +2 +0 +0 +6 +4 =40 

40 mod 10 = 0.  If the last digit did not result in a number divisible by 10, the credit card 
number is invalid. 

 
Input Format:   The user will provide you with a credit card number without spaces. 
 
Output Format:  The program will return "Valid" or "Invalid" depending on the success or failure of 
the check digit. 
 
Input: 
5499001100120034 
Output: 
Valid 
 
Input: 
5499001100120036 
Output: 
Invalid 
 
 
7. The library problem:  
Write a program to solve the following problem: A library wants a program that will calculate the 
due date for a book on the basis of the issue date. The no. of days for which the book is issued is 
decided by the librarian at the time of issuing the book. For e.g. If the librarian enters the current 
date as 14-01-2000 and the no of days in which the book is due as 15, then your program should 
calculate the due date and give the output as 29-01-2000. Your program should accept the 



 176 

current date (day, month, year) and the number of issue days as input and generate the due date 
as output. 
 
 
 
8. The Comment Removal problem 
 
Write a C program which reads the contents of a file containing a C program and removes all 
comments from the program. 
  
 
 
9. The Histogram problem 
 
Write a C program which reads the contents of a text file and generates a histogram of 
frequencies of all alphabets in the file. Use * to draw the histogram bars. 
 
 
 
10. The Cryptarithmetic puzzle 
 
 “Cryptarithmetic” puzzles are puzzles in which one gets problems like these 
  hello   
+ there  
-------  
  world  
and is asked to assign digits to each letter so that the resulting addition is correct. Each digit from 
0 to 9 must be used at most once, and the leading digits may not be 0. In the above cases, for 
example, we can get the solutions 
  56442  
+ 15606  
-------  
  72048  
Write a program to find a solution to cryptarithmetic problems for which the input consists of 
triples of strings each containing up to 128 lower-case letters and the output is in the form given in 
the sample below.  
For the input      Produce the output 
hello there world       hello    56442 

+ there  + 15606 
-------   ------- 
  world    72048 

 
 
 
 
11. The Compression problem 
 
Write a program which compresses a text file such that consecutive occurrences of specific 
character are replaced by the character followed by a digit indicating the number of times the 
character occurs. Replace only if the character occurs 3 or more times consecutively. For 
example, if the input text is “aath1111yy66666kkk    baabbbbdg”, the output should be  
“aath14yy65k3 4baab4dg”. Write a decompression program which reads a compressed file and 
generates the original text. 
 
 
 
12. The 4 queens problem 
 
This problem is to place 4 queens on a 4X4 chessboard such that no two queens can attack. i.e. 
No two queens are on the same row, same column or diagonal. Write a program to generate all 
possible valid placements. One possible solution is shown below.  



 177 

 Q   
     Q 
Q    
  Q  

 
The output is a set of column numbers { c1, c2, c3, c4} such that cj is the column number in which 
Queen j is placed (in row j). For the above example, the output is {2,4,1,3}. Extend your program 
for n queens. 
 
 

Signature of the instructor   
 

Date  
 

/       /           

 
Assignment Evaluation                                    Signature  
 

 0: Not done             2: Late Complete     4: Complete  
      

1: Incomplete  3: Needs improvement     5: Well Done  
 

 
 

 
 
 

 
 



 178 

Appendix A 
 
1. Configuring The NFS Server 
 
Here are the steps to configure the NFS server in this scenario:  
1. Edit the /etc/exports file to allow NFS mounts of the /home directory with read/write access.  
/home                   *(rw,sync) 
2. Let NFS read the /etc/exports file for the new entry, and make /home available to the network 
with the exportfs command.  
[root@bigboy tmp]# exportfs -a 
3. Make sure the required nfs, nfslock, and portmap daemons are both running and configured to 
start after the next reboot.  
[root@bigboy tmp]# chkconfig nfslock on 
[root@bigboy tmp]# chkconfig nfs on 
[root@bigboy tmp]# chkconfig portmap on 
[root@bigboy tmp]# service portmap start 
[root@bigboy tmp]# service nfslock start 
[root@bigboy tmp]# service nfs start 
After configuring the NFS server, we have to configure its clients, This will be covered next.  
 
2. Configuring The NFS Client 
 
You also need to configure the NFS clients to mount their /home directories on the NFS server.  
1. Make sure the required netfs, nfslock, and portmap daemons are running and configured to 
start after the next reboot.  
[root@smallfry tmp]# chkconfig nfslock on 
[root@smallfry tmp]# chkconfig netfs on 
[root@smallfry tmp]# chkconfig portmap on 
[root@smallfry tmp]# service portmap start 
[root@smallfry tmp]# service netfs start 
[root@smallfry tmp]# service nfslock start 
2. Keep a copy of the old /home directory, and create a new directory /home on which you'll 
mount the NFS server's directory.  
[root@smallfry tmp]# mv /home /home.save 
[root@smallfry tmp]# mkdir /home 
3. Make sure you can mount bigboy's /home directory on the new /home directory you just 
created. Unmount it once everything looks correct.  
[root@smallfry tmp]# mount 192.168.1.100:/home /home/ 
[root@smallfry tmp]# ls /home 
 [root@smallfry tmp]# umount /home 
4. Start configuring autofs automounting. Edit your /etc/auto.master file to refer to file 
/etc/auto.home for mounting information whenever the /home directory is accessed. After five 
minutes, autofs unmounts the directory.  
#/etc/auto.master 
/home      /etc/auto.home --timeout 600 
5. Edit file /etc/auto.home to do the NFS mount whenever the /home directory is accessed. If the 
line is too long to view on your screen, you can add a \ character at the end to continue on the 
next line.  
#/etc/auto.home 
*   -fstype=nfs,soft,intr,rsize=8192,wsize=8192,nosuid,tcp \ 
   192.168.1.100:/home:& 
6. Start autofs and make sure it starts after the next reboot with the chkconfig command.  
[root@smallfry tmp]# chkconfig autofs on 
[root@smallfry tmp]# service autofs restart 
 
3. Configuring The NIS Server 
 
1. Edit Your /etc/sysconfig/network File 



 179 

You need to add the NIS domain you wish to use in the /etc/sysconfig/network file. For the school, 
call the domain NISNETWORK.  
#/etc/sysconfig/network 
NISDOMAIN="NISNETWORK" 
2. Edit Your /etc/yp.conf File 
NIS servers also have to be NIS clients themselves, so you'll have to edit the NIS client 
configuration file /etc/yp.conf to list the domain's NIS server as being the server itself or localhost.  
# /etc/yp.conf - ypbind configuration file 
ypserver 127.0.0.1 
 
4. Start The Key NIS Server Related Daemons 
 
Start the necessary NIS daemons in the /etc/init.d directory and use the chkconfig command to 
ensure they start after the next reboot.  
[root@bigboy tmp]# service portmap start 
[root@bigboy tmp]# service yppasswdd start 
[root@bigboy tmp]# service ypserv start 
[root@bigboy tmp]# chkconfig portmap on 
[root@bigboy tmp]# chkconfig yppasswdd on 
[root@bigboy tmp]# chkconfig ypserv on 
 
5. Initialize Your NIS Domain 
 
Now that you have decided on the name of the NIS domain, you'll have to use the ypinit 
command to create the associated authentication files for the domain. You will be prompted for 
the name of the NIS server, which in this case is bigboy.  
With this procedure, all nonprivileged accounts are automatically accessible via NIS.  
[root@bigboy tmp]# /usr/lib/yp/ypinit -m 
At this point, we have to construct a list of the hosts which will run NIS  
servers.  bigboy is in the list of NIS server hosts.  Please continue to add 
the names for the other hosts, one per line.  When you are done with the 
list, type a <control D>. 
        next host to add:  domainname 
        next host to add: 
The current list of NIS servers looks like this: 
 
domainname 
  
Is this correct?  [y/n: y]  y 
We need a few minutes to build the databases... 
 
6. Start The ypbind and ypxfrd Daemons 
 
You can now start the ypbind and the ypxfrd daemons because the NIS domain files have been 
created.  
[root@bigboy tmp]# service ypbind start 
Listening for an NIS domain server. 
[root@bigboy tmp]# service ypxfrd start 
[root@bigboy tmp]# chkconfig ypbind on 
[root@bigboy tmp]# chkconfig ypxfrd on 
 
7. Configuring The NIS Client 
 
Now that the NIS server is configured, it's time to configure the NIS clients. There are a number of 
related configuration files that you need to edit to get it to work. Take a look at the procedure.  
1.  Run authconfig 
The authconfig or the authconfig-tui program automatically configures your NIS files after 
prompting you for the IP address and domain of the NIS server.  
[root@smallfry tmp]# authconfig-tui 



 180 

Once finished, it should create an /etc/yp.conf file that defines, amongst other things, the IP 
address of the NIS server for a particular domain. It also edits the /etc/sysconfig/network file to 
define the NIS domain to which the NIS client belongs.  
2.  Start The NIS Client Related Daemons 
Start the ypbind NIS client, and portmap daemons in the /etc/init.d directory and use the chkconfig 
command to ensure they start after the next reboot. Remember to use the rpcinfo command to 
ensure they are running correctly.  
[root@smallfry tmp]# service portmap start 
[root@smallfry tmp]# service ypbind start 
 
8. Adding NIS Users 
 
[root@bigboy tmp]# useradd -g users nisuser 
[root@bigboy tmp]# passwd nisuser 
[root@bigboy tmp]# cd /var/yp 
[root@bigboy yp]# make 
 
9. Initializing  Database (Postgresql)  
 
1. Steps to Initialize and configure Database 
# chown  postgres  /var/lib/pgsql/data 
# su – postgres 
# initdb –D /var/lib/pgsql/data 
# chkconfig postgresql on 
# service postgresql start 
 
2. Configuration Files 
In pg_hba.conf file we have to define  
* max_connection allowed 
* port 
postgresql.conf -This file contents Client Authentication Configuration.  In this file we have to 
define Database name and database owner 
 



 181 

References 
 

1. Forouzan B. and Gilbert R, “Structured Programming approach using C”, 
2nd Edition , Thomson learning Publications 

2. Brian W. Kernighan and Dennis M. Ritchie, “The C Programming 
Language”, Second Edition, Prentice Hall, Englewood Cliffs, NJ, 

3. Herbert Schildt, “The Complete Reference – C”, Fourth Edition, Osborne 
Publications 

4. Ramez Elmasri and S. Navathe, “Fundamentals of Database Systems”, 4th 
Edition, Pearson Education 

5. Abraham Silberschatz, Henry F. Korth and S. Sudarshan, “Database 
System Concepts”, 5th  Edition. McGraw-Hill  

6. Raghu Ramakrishnan and Johannes Gehrke , “Database Management 
Systems” , McGraw-Hill 

7. Sumitabha Das, " UNIX Concepts and Applications" Tata Mcgraw Hill 
8. Practical PostgreSQL, O’Reilly Publications 
9. MS-DOS Manual 

 
 


